Development of a 2 μm Solid-State Laser for Lidar in the Past Decade

The 2 μm wavelength belongs to the eye-safe band and has a wide range of applications in the fields of lidar, biomedicine, and materials processing. With the rapid development of military, wind power, sensing, and other industries, new requirements for 2 μm solid-state laser light sources have emerged, especially in the field of lidar. This paper focuses on the research progress of 2 μm solid-state lasers for lidar over the past decade. The technology and performance of 2 μm pulsed single longitudinal mode solid-state lasers, 2 μm seed solid-state lasers, and 2 μm high power solid-state lasers are, respectively, summarized and analyzed. This paper also introduces the properties of gain media commonly used in the 2 μm band, the construction method of new bonded crystals, and the fabrication method of saturable absorbers. Finally, the future prospects of 2 μm solid-state lasers for lidar are presented.

[1]  Ying He,et al.  Differential quartz-enhanced photoacoustic spectroscopy , 2023, Applied Physics Letters.

[2]  Haonan Lin,et al.  Computational coherent Raman scattering imaging: breaking physical barriers by fusion of advanced instrumentation and data science , 2023, eLight.

[3]  Shunda Qiao,et al.  Highly sensitive and fast hydrogen detection based on light-induced thermoelastic spectroscopy , 2023, Ultrafast Science.

[4]  Yufei Ma,et al.  Highly sensitive photoacoustic acetylene detection based on differential photoacoustic cell with retro-reflection-cavity , 2023, Photoacoustics.

[5]  Yongji Yu,et al.  Development of 1.6‐μm Er: YAG solid‐state laser for lidar , 2023, Microwave and Optical Technology Letters.

[6]  D. Christodoulides,et al.  Complex skin modes in non-Hermitian coupled laser arrays , 2022, Light: Science & Applications.

[7]  M. Beck,et al.  Planarized THz quantum cascade lasers for broadband coherent photonics , 2022, Light, science & applications.

[8]  S. Noach,et al.  Electro optic Tm:YAP/KLTN laser using polarization modulation , 2022, Optics & Laser Technology.

[9]  Jiacheng Huang,et al.  Investigation of Nonlinear Optical Modulation Characteristics of MXene VCrC for Pulsed Lasers , 2022, Molecules.

[10]  Yongji Yu,et al.  Development Progress of 3–5 μm Mid-Infrared Lasers: OPO, Solid-State and Fiber Laser , 2021, Applied Sciences.

[11]  Mingjian Wang,et al.  Nickel-cobalt layered double hydroxide nanosheets saturable absorber for passively Q-switched Tm:YAG ceramic 2 μm solid-state laser , 2021 .

[12]  Jie Liu,et al.  Mo:BiVO4 Nanoparticles-Based Optical Modulator and Its Application in a 2-μm Pulsed Laser , 2021, Nanomaterials.

[13]  J. Hartmann,et al.  GeSnOI mid-infrared laser technology , 2021, Light, science & applications.

[14]  Chunting Wu,et al.  LD end-pumped Tm: YAG acousto-optic Q-switched double-pulse laser , 2021, Infrared Physics & Technology.

[15]  Shengzhi Zhao,et al.  Layered Metallic Vanadium Disulfide for Doubly Q-Switched Tm:YAP Laser with EOM: Experimental and Theoretical Investigations , 2021, Nanomaterials.

[16]  Jia Guo,et al.  Watt-level graphdiyne passively Q-switched Tm:YAP laser at ~2 µm , 2021 .

[17]  Shengzhi Zhao,et al.  Theoretical and experimental investigations on doubly Q-switched Tm:YAP laser with EOM and Sb2Te3 nanosheets. , 2021, Optics express.

[18]  Aydogan Ozcan,et al.  Computational imaging without a computer: seeing through random diffusers at the speed of light , 2021, eLight.

[19]  Xin-yu Chen,et al.  High-Efficiency Ho:YAP Pulse Laser Pumped at 1989 nm , 2021, Crystals.

[20]  Deyang Yu,et al.  Efficient continuous wave and acousto-optical Q-switched Tm:Lu2O3 laser pumped by the laser diode at 1.7 μm , 2021 .

[21]  M. Eichhorn,et al.  High pulse energy ZnGeP2 OPO directly pumped by a Q-switched Tm3+-doped single-oscillator fiber laser. , 2021, Optics letters.

[22]  Hongyu Qin Continuous-Wave Electro-Optically Q-Switched Ho:GdVO4 Laser , 2021, Journal of Russian Laser Research.

[23]  J. Cui,et al.  High peak power passively Q‐switched 2 μm solid‐state laser based on a MoS2 saturated absorber , 2021, Microwave and Optical Technology Letters.

[24]  T. Mocek,et al.  Diode-pumped, electro-optically Q-switched, cryogenic Tm:YAG laser operating at 1.88 μm , 2021, High Power Laser Science and Engineering.

[25]  袁振 Yuan Zhen,et al.  A High-Power LD Double-End-Pumped Acousto-Optic Q-Switched Tm∶YAP Laser , 2021 .

[26]  Mingjian Wang,et al.  Nickel-vanadium layered double hydroxide nanosheets as the saturable absorber for a passively Q-switched 2  µm solid-state laser. , 2021, Applied optics.

[27]  Hui-yun Zhang,et al.  2 µm passively Q-switched all-solid-state laser based on a Ta2NiSe5 saturable absorber , 2020 .

[28]  Shengzhi Zhao,et al.  Optical modulation of magnesium 2,5-dihydroxyterephthalate saturable absorber for passively Q-switched 2 μm solid-state laser , 2020, Applied Physics Express.

[29]  Shou-Tai Lin,et al.  Actively Q-Switched Tm:YAP Laser Constructed Using an Electro-Optic Periodically Poled Lithium Niobate Bragg Modulator , 2020, IEEE Photonics Journal.

[30]  F. Tittel,et al.  Passively Q-switched Tm:YAlO3 laser based on WS2/MoS2 two-dimensional nanosheets at 2 μm , 2020 .

[31]  Shengzhi Zhao,et al.  In-band pumped, high-efficiency LGS electro-optically Q-switched 2118 nm Ho:YAP laser with low driving voltage , 2020 .

[32]  X. Duan,et al.  A high-beam-quality passively Q-switched 2 μm solid-state laser with a WSe2 saturable absorber , 2020 .

[33]  Meng Li,et al.  Self-Q-switched operation in Tm:YAG crystal and passively Q-switched operation using GaSe saturable absorber , 2020 .

[34]  Chao Wang,et al.  Laser-diode dual-end-pumped electro-optic Q-switched slab Tm:YAP laser , 2020 .

[35]  E. Lallier,et al.  Actively Q-switched tunable single-longitudinal-mode 2 µm Tm:YAP laser using a transversally chirped volume Bragg grating. , 2020, Optics express.

[36]  Shengzhi Zhao,et al.  Saturable absorption characteristics of Bi2Se3 in a 2 µm Q-switching bulk laser. , 2020, Optics express.

[37]  Shengzhi Zhao,et al.  Diameter-selected single-walled carbon nanotubes for the passive Q-switching operation at 2 μm , 2020 .

[38]  Yuping Zhang,et al.  Nonlinear optical properties and Q-switched laser application of a novel Mo0.5Re0.5S2 ternary alloy material at 2 μm , 2020, Applied Physics Express.

[39]  Shengzhi Zhao,et al.  Doubly passively Q-switched Tm:YAP laser with MoS2 and WS2 saturable absorbers at 2 μm , 2019 .

[40]  Ming Xin,et al.  Optical frequency synthesizer with an integrated erbium tunable laser , 2019, Light: Science & Applications.

[41]  Shengzhi Zhao,et al.  Doubly Q-switched Tm:YAP laser with g-C3N4 saturable absorber and AOM , 2019, Optical Materials.

[42]  Chunting Wu,et al.  1.99 micron Tm:YAP acousto-optical Q-switch laser , 2019, IOP Conference Series: Materials Science and Engineering.

[43]  Jingliang He,et al.  The energy band structure analysis and 2 μm Q-switched laser application of layered rhenium diselenide , 2019, RSC advances.

[44]  Shengzhi Zhao,et al.  2 μm Passively Q-switched all-solid-state laser based on WSe2 saturable absorber , 2019, Optics & Laser Technology.

[45]  X. Duan,et al.  High-beam-quality operation of a 2  μm passively Q-switched solid-state laser based on a boron nitride saturable absorber. , 2019, Applied optics.

[46]  Yongfeng Wu,et al.  Diode pumped high efficiency single-longitudinal-mode Tm, Ho:YAP ring laser , 2019, Optical Engineering.

[47]  Yongji Yu,et al.  Pulse-diode-intermittent-pumped 2-µm acousto-optically Q-switched Tm:YAG laser , 2019, Infrared Physics & Technology.

[48]  Y. Zavartsev,et al.  Acousto-Optic Q-Switched Lasing in Tm:YbAG Crystal , 2019, Physics of Wave Phenomena.

[49]  Pengchao Wang,et al.  2-μm passive Q-switched Tm:YAP laser with SnSe2 absorber , 2018, Optical Engineering.

[50]  Fang Chen,et al.  Room temperature diode-pumped single-frequency Tm:LuYAG laser at 2023 nm , 2018, Other Conferences.

[51]  P. Spano,et al.  2-μm double-pulse single-frequency Tm:fiber laser pumped Ho:YLF laser for a space-borne CO2 lidar. , 2018, Applied optics.

[52]  Cheng Zhang,et al.  A solid-state passively Q-switched Tm,Gd:CaF2 laser with a Ti3C2Tx MXene absorber near 2 µm , 2018, Laser Physics Letters.

[53]  Baoquan Yao,et al.  An injection-seeded Q-switched Ho: YLF laser by a tunable single-longitudinal-mode Tm, Ho: YLF laser at 2050.96 nm , 2018, Optics & Laser Technology.

[54]  B. Yao,et al.  A 106W Q-switched Ho:YAG laser with single crystal , 2018, Optik.

[55]  Jingliang He,et al.  High-power passively Q-switched 2.0 μm all-solid-state laser based on a MoTe2 saturable absorber. , 2018, Optics express.

[56]  Cheng Zhang,et al.  Compact passive Q-switching of a diode-pumped Tm,Y:CaF2 laser near 2 μm , 2018, Optics & Laser Technology.

[57]  M. Gao,et al.  High-repetition-rate single-frequency Ho:YAG MOPA system. , 2018, Applied optics.

[58]  Dechun Li,et al.  High-quality 2-μm Q-switched pulsed solid-state lasers using spin-coating-coreduction approach synthesized Bi 2 Te 3 topological insulators , 2018 .

[59]  Huagang Liu,et al.  Passively Q-switched solid-state Tm:YAG laser using topological insulator Bi2Te3 as a saturable absorber. , 2018, Applied optics.

[60]  X. Qian,et al.  Efficient continuous-wave, broadly tunable and passive Q-switching lasers based on a Tm3+:CaF2 crystal , 2018 .

[61]  Hongda Zhang,et al.  Performance of continuous wave and acousto-optically Q-switched Tm, Ho: YAP laser pumped by diode laser , 2018 .

[62]  Xunmin Liu,et al.  Kilo-hertz-level Q-switched laser characteristics of a Tm,Y:CaF 2 crystal , 2017 .

[63]  Q. Ye,et al.  High-energy, stable single-frequency Ho:YAG ceramic amplifier system. , 2017, Applied optics.

[64]  Baoquan Yao,et al.  1.5 W high efficiency and tunable single-longitudinal-mode Ho:YLF ring laser based on Faraday effect. , 2017, Optics express.

[65]  Xunmin Liu,et al.  High-power passively Q-switched 2 μm all-solid-state laser based on a Bi2Te3 saturable absorber , 2017 .

[66]  Chun-qing Gao,et al.  1  kHz single-frequency 2.09  μm Ho:YAG ring laser. , 2017, Applied optics.

[67]  Qi Jie Wang,et al.  A single-frequency Ho:YAG laser with bow-tie architecture injected by different polarized seeders , 2017 .

[68]  Z. Fan,et al.  High power single-longitudinal-mode Ho:YLF unidirectional ring laser based on a composite structure of acousto-optic device and wave plate , 2017 .

[69]  Xiaotao Yang,et al.  A Resonantly Pumped Single-Longitudinal Mode Ho:Sc2SiO5 Laser with Two Fabry–Perot Etalons , 2017 .

[70]  Xavier Mateos,et al.  Modelling of graphene Q-switched Tm lasers , 2017 .

[71]  Wen-Qi Ge,et al.  High beam quality 5 J, 200 Hz Nd:YAG laser system , 2017, Light: Science & Applications.

[72]  Baoquan Yao,et al.  High power single-longitudinal-mode Ho3+:YVO4 unidirectional ring laser , 2017 .

[73]  Q. Ye,et al.  Single-frequency, injection-seeded Q-switched Ho:YAG ceramic laser pumped by a 1.91μm fiber-coupled LD. , 2016, Optics express.

[74]  U. Griebner,et al.  MoS 2 saturable absorber for passive Q-switching of Yb and Tm microchip lasers , 2016 .

[75]  Q. Ye,et al.  15 mJ single-frequency Ho:YAG laser resonantly pumped by a 1.9 µm laser diode , 2016 .

[76]  Shengzhi Zhao,et al.  WS2 as a saturable absorber for Q-switched 2  micron lasers. , 2016, Optics letters.

[77]  Jian Zhang,et al.  Black phosphorus-based saturable absorber for Q-switched Tm:YAG ceramic laser , 2016 .

[78]  Jingliang He,et al.  Dual-wavelength, passively Q-switched Tm:YAP laser with black phosphorus saturable absorber , 2016 .

[79]  Zhinan Guo,et al.  2 μm passively Q-switched laser based on black phosphorus , 2016 .

[80]  B. Yao,et al.  A tunable and single-longitudinal-mode Ho:YLF laser , 2016 .

[81]  D. Shen,et al.  Gold nanorods as the saturable absorber for a diode-pumped nanosecond Q-switched 2  μm solid-state laser. , 2016, Optics letters.

[82]  Q. Ye,et al.  Single-frequency injection-seeded Q-switched Ho:YAG laser , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[83]  A. Meissner,et al.  A single-frequency double-pulse Ho:YLF laser for CO2-lidar , 2016, SPIE LASE.

[84]  Mali Gong,et al.  High-slope-efficiency 2.06 μm Ho: YLF laser in-band pumped by a fiber-coupled broadband diode. , 2016, Optics letters.

[85]  Y. Ju,et al.  Resonantly pumped single-longitudinal-mode Ho:YAG laser , 2016 .

[86]  Y. Ju,et al.  Experimental study into single-longitudinal-mode Tm,Ho:YVO4 lasers , 2015 .

[87]  Y. Ju,et al.  Diode-pumped electro-optical cavity-dumped Tm:YAP laser at 1996.9 nm , 2015 .

[88]  C. Liu,et al.  Dual-loss-modulated Q-switched Tm:LuAG laser with AOM and monolayer graphene. , 2015, Applied optics.

[89]  F. Gibert,et al.  2-μm Ho emitter-based coherent DIAL for CO(2) profiling in the atmosphere. , 2015, Optics letters.

[90]  G. Canat,et al.  Eyesafe coherent detection wind lidar based on a beam-combined pulsed laser source. , 2015, Optics letters.

[91]  Guoqing Cai,et al.  Diode-pumped acousto-optical cavity-dumped Tm:YAP laser at 1989 nm. , 2014, Applied optics.

[92]  Xiaoming Duan,et al.  Efficient Q-switched Ho:GdVO₄ laser resonantly pumped at 1942 nm. , 2014, Optics letters.

[93]  Jingliang He,et al.  Passively Q-switched 2 μm Tm:YAP laser based on graphene saturable absorber mirror. , 2014, Applied optics.

[94]  Guoqing Cai,et al.  Acousto-optically cavity dumped Tm:YAG laser with 54 ns pulses at 200 kHz repetition rate. , 2014, Optics express.

[95]  Xin-lu Zhang,et al.  Diode-end-pumped continuously tunable single frequency Tm, Ho:LLF laser at 2.06 μm. , 2014, Applied optics.

[96]  Chun-qing Gao,et al.  A resonantly-pumped tunable Q-switched Ho:YAG ceramic laser with diffraction-limit beam quality. , 2014, Optics express.

[97]  Yan Li,et al.  Single-frequency and dual-wavelength Ho:YAG nonplanar ring oscillator resonantly pumped by a Tm:YLF laser , 2013 .

[98]  Fabien Gilbert,et al.  2-μm high-power multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application , 2013, Applied Physics B.

[99]  Lei Wang,et al.  Resonantly pumped monolithic nonplanar Ho:YAG ring laser with high-power single-frequency laser output at 2122 nm. , 2013, Optics express.

[100]  M. Esser,et al.  330 mJ single-frequency Ho:YLF slab amplifier. , 2013, Optics letters.

[101]  Liu Wenbin,et al.  Room Temperature Diode-Pumped Tunable Single-Frequency Tm:YAG Ceramic Laser , 2013 .

[102]  Xiaoming Duan,et al.  Single-frequency, injection-seeded Q-switched operation of a resonantly pumped Ho:YAlO3 laser at 2,118 nm , 2013 .

[103]  B. Yao,et al.  Single-frequency, injection-seeded Q-switched operation of a resonantly pumped Ho:YAlO3 laser at 2,118 nm , 2013, Applied Physics B.

[104]  A. Pal,et al.  "All-fiber" tunable laser in the 2 μm region, designed for CO2 detection. , 2012, Applied optics.

[105]  M. Richardson,et al.  Welding of polymers using a 2 μm thulium fiber laser , 2012 .

[106]  B. Yao,et al.  Injection-seeded Ho:YAG laser at room temperature by monolithic nonplanar ring laser , 2012 .

[107]  Tongyu Dai,et al.  Single-frequency, Q-switched Ho:YAG laser at room temperature injection-seeded by two F-P etalons-restricted Tm, Ho:YAG laser. , 2012, Optics letters.

[108]  Y. Ju,et al.  Research on 2-μm solid-state lasers , 2012 .

[109]  Peter Fuhrberg,et al.  Directly diode-pumped high-energy Ho:YAG oscillator. , 2012, Optics letters.

[110]  B. Yao,et al.  Room temperature single-frequency output at 2118 nm from a diode-pumped Tm, Ho:YAP laser , 2012 .

[111]  Ran Wang,et al.  2 μm single-frequency Tm:YAG laser generated from a diode-pumped L-shaped twisted mode cavity , 2012 .

[112]  Weibiao Chen,et al.  Development of all-solid coherent Doppler wind lidar (Chinese Title: Development of all-solid coherent Doppler wind lidar) , 2012 .

[113]  M. Esser,et al.  Ho:YLF & Ho:LuLF slab amplifier system delivering 200 mJ, 2 µm single-frequency pulses. , 2011, Optics express.

[114]  B. Yao,et al.  Diode-pumped single-frequency Tm:YAG laser with double etalons , 2011 .

[115]  Suhui Yang,et al.  Coupled-cavity concept applied to a highly compact single-frequency laser operating in the 2 μm spectral region. , 2011, Applied optics.

[116]  B. Yao,et al.  Diode-pumped room temperature single longitudinal mode lasing of Tm,Ho:YLF microchip laser at 2050.5 μm , 2011 .

[117]  Y. Ju,et al.  Research on single-longitudinal-mode selection of 2 μm solid-state-lasers , 2011 .

[118]  Yunshan Zhang,et al.  Single-frequency operation of diode-pumped 2 microm Q-switched Tm:YAG laser injection seeded by monolithic nonplanar ring laser. , 2010, Applied optics.

[119]  C. T. Wu,et al.  A single-longitudinal-mode CW 0.25 mm Tm,Ho:GdVO4 Microchip Laser , 2010 .

[120]  Aria A. Razmaria,et al.  Endoscopic vaporesection of the prostate using the continuous-wave 2-microm thulium laser: outcome and demonstration of the surgical technique. , 2009, European urology.

[121]  Xiao-Wen Sun,et al.  [Thulium laser resection of prostate-tangerine technique in treatment of benign prostate hyperplasia]. , 2005, Zhonghua yi xue za zhi.

[122]  Johan Nilsson,et al.  High-energy in-fiber pulse amplification for coherent lidar applications. , 2004, Optics letters.

[123]  R. Banta,et al.  Remote sensing of multi-level wind fields with high-energy airborne scanning coherent Doppler lidar. , 1998, Optics express.

[124]  S. Henderson,et al.  Eye-safe coherent laser radar system at 2.1 microm using Tm,Ho:YAG lasers. , 1991, Optics letters.

[125]  S. Henderson,et al.  Remote wind profiling with a solid-state Nd:YAG coherent lidar system. , 1989, Optics letters.

[126]  Robert L. Byer,et al.  Coherent laser radar at 1,06 μm using Nd:YAG lasers , 1987 .

[127]  R. Huffaker,et al.  Laser Doppler detection systems for gas velocity measurement. , 1970, Applied optics.

[128]  Y. Zavartsev,et al.  Acousto-Optic Q-Switched Lasing in Tm:YbAG Crystal , 2019, Physics of Wave Phenomena.

[129]  戴殊韬 Dai Shutao,et al.  Passively Q-Switched Solid-State Tm∶YAG Laser with MoS2 as Saturable Absorber , 2018 .

[130]  吴春婷 Wu Chun-ting,et al.  Research Progress of 2 μm Ho-doped Solid-state Laser , 2018 .

[131]  Satoshi Wada,et al.  128 mJ/Pulse, Laser-Diode-Pumped, Q-Switched Tm:YAG Laser , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[132]  Y. Ju,et al.  diode-pumped single-frequency Tm:GdVO4 laser at 1897.6 nm , 2012 .

[133]  B. Yao,et al.  Room temperature single longitudinal mode Tm,Ho:Yap microchip laser at 2102.6 nm , 2011 .

[134]  Yao Zhihai The development of 2μm wave band laser , 2008 .

[135]  Wang Jian-ying,et al.  Countermeasures against IR guided missile by airplane and its trend , 2006 .

[136]  Li Wanrong Application of 2μm Tm Laser on Biomedicine , 2005 .

[137]  Sammy W. Henderson,et al.  Coherent laser radar at 2 μm using solid-state lasers , 1993, IEEE Trans. Geosci. Remote. Sens..

[138]  S. Henderson,et al.  Eye-safe coherent laser radar system at 2.1μm using Tm, Ho:YAG lasers , 1991 .