Modelling of ELM dynamics for DIII-D and ITER
暂无分享,去创建一个
Scott Kruger | P. B. Snyder | Arnold H. Kritz | Alexei Pankin | Carl Sovinec | Dylan Brennan | Glenn Bateman | A. Kritz | S. Kruger | C. Sovinec | A. Pankin | P. Snyder | D. Brennan | G. Bateman
[1] J. Connor,et al. A review of models for ELMs , 1998 .
[2] Steven J. Plimpton,et al. The NIMROD code: a new approach to numerical plasma physics , 1999 .
[3] S. Kruger,et al. Dynamics of the major disruption of a DIII-D plasmaa) , 2005 .
[4] C. J. Macdonald,et al. Simulations of pedestal formation and ELM cycles , 2006 .
[5] L. L. Lao,et al. ELMs and constraints on the H-mode pedestal: peeling–ballooning stability calculation and comparison with experiment , 2004 .
[6] A. Kritz,et al. Theory-based model for the pedestal, edge stability and ELMs in tokamaks , 2006 .
[7] S. Kruger,et al. NIMROD: A computational laboratory for studying nonlinear fusion magnetohydrodynamics , 2003 .
[8] F. Wagner,et al. Regime of Improved Confinement and High Beta in Neutral-Beam-Heated Divertor Discharges of the ASDEX Tokamak , 1982 .
[9] H. Wilson,et al. Numerical studies of edge localized instabilities in tokamaks , 2002 .
[10] Scott Kruger,et al. Computing nonlinear magnetohydrodynamic edge localized instabilities in fusion plasmas , 2006 .
[11] Scott Kruger,et al. Nonlinear extended magnetohydrodynamics simulation using high-order finite elements , 2005 .
[12] H. Zohm. Edge localized modes (ELMs) , 1996 .
[13] Scott Kruger,et al. Computational modeling of fully ionized magnetized plasmas using the fluid approximation , 2005 .
[14] Maxim Umansky,et al. Stability and dynamics of the edge pedestal in the low collisionality regime: physics mechanisms for steady-state ELM-free operation , 2007 .
[15] L. L. Lodestro,et al. On the Grad–Shafranov equation as an eigenvalue problem, with implications for q solvers , 1994 .
[16] M. S. Chance,et al. Vacuum calculations in azimuthally symmetric geometry , 1997 .
[17] Steven J. Plimpton,et al. Nonlinear magnetohydrodynamics simulation using high-order finite elements , 2004 .
[18] G. Bateman,et al. ELM triggering conditions for the integrated modeling of H-mode plasmas , 2004, physics/0411086.
[19] A. Glasser,et al. Determination of Free Boundary Ideal MHD Stability with DCON and VACUUM , 1997 .
[20] W. Kerner,et al. Plasma confinement in JET H?mode plasmas with H, D, DT and T isotopes , 1999 .
[21] G. Bateman,et al. Combined model for the H-mode pedestal and ELMs , 2005 .
[22] Choong-Seock Chang,et al. Numerical study of neoclassical plasma pedestal in a tokamak geometry , 2004 .
[23] G. V. Pereverzew,et al. ASTRA. An Automatic System for Transport Analysis in a Tokamak. , 1991 .
[24] D. J. Campbell,et al. Chapter 1: Overview and summary , 1999 .
[25] S. Kruger,et al. Nonlocal closures for plasma fluid simulations , 2004 .
[26] L. D. Pearlstein,et al. The National Transport Code Collaboration Module Library , 2004, Comput. Phys. Commun..
[27] R. Miller,et al. Hot particle stabilization of ballooning modes in tokamaks , 1987 .