The future of mobility and its critical raw materials

Concerns for climate change and declining oil reserves lead to a shift of transportation systems in many industrial countries. However, alternative drive concepts contain to some extent critical raw materials. Since the availability of certain raw materials could be decisive for the success of emerging technologies, concerns are growing about the potential limitation of resources. This brought about a growing attention to the subjects of criticality and resource security of raw materials by science, policy and industry. Four of the resulting surveys are described in terms of their framing of criticality, their indicators for evaluating criticality, and their rankings of potentially critical raw materials. Critical raw materials are used in alternative drive concepts because of their specific properties. The focus of our work lies on batteries for electric vehicles with special attention to lithium-ion batteries being one of the most promising candidates for energy storage there. Lithium-ion batteries use as major cathode materials lithium, manganese and cobalt, all of which are potential critical. A material flow model of the global manganese cycle is developed. It could be identified that there is a lack of relevant data for processes and flows. The lack of data impedes a comprehensive view and therefore no final conclusions could be drawn, which advice the need for further research. Using manganese as an example, it could be illustrated how material flow analysis can contribute to compiling relevant preparatory work that can subsequently serve as a basis for a prospective support of a criticality evaluation and to inform stakeholders and policy makers about the effectiveness of various interventions to reduce the risk or the effects of supply chain disruptions.