Flexible quantum dot light-emitting diodes for next-generation displays

In the future electronics, all device components will be connected wirelessly to displays that serve as information input and/or output ports. There is a growing demand of flexible and wearable displays, therefore, for information input/output of the next-generation consumer electronics. Among many kinds of light-emitting devices for these next-generation displays, quantum dot light-emitting diodes (QLEDs) exhibit unique advantages, such as wide color gamut, high color purity, high brightness with low turn-on voltage, and ultrathin form factor. Here, we review the recent progress on flexible QLEDs for the next-generation displays. First, the recent technological advances in device structure engineering, quantum-dot synthesis, and high-resolution full-color patterning are summarized. Then, the various device applications based on cutting-edge quantum dot technologies are described, including flexible white QLEDs, wearable QLEDs, and flexible transparent QLEDs. Finally, we showcase the integration of flexible QLEDs with wearable sensors, micro-controllers, and wireless communication units for the next-generation wearable electronics.

[1]  V. Bulović,et al.  Emergence of colloidal quantum-dot light-emitting technologies , 2012, Nature Photonics.

[2]  Yonghoon Choi,et al.  Large-Scale Synthesis of Highly Luminescent InP@ZnS Quantum Dots Using Elemental Phosphorus Precursor , 2017 .

[3]  Lazaro A. Padilha,et al.  Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes , 2013, Nature Communications.

[4]  V. Bulović,et al.  NiO as an inorganic hole-transporting layer in quantum-dot light-emitting devices. , 2006, Nano letters.

[5]  Eric A. Dauler,et al.  High‐Performance Shortwave‐Infrared Light‐Emitting Devices Using Core–Shell (PbS–CdS) Colloidal Quantum Dots , 2015, Advanced materials.

[6]  Taeghwan Hyeon,et al.  Nonclassical nucleation and growth of inorganic nanoparticles , 2016 .

[7]  V. Bulović,et al.  Colloidal quantum dot light-emitting devices , 2010, Nano reviews.

[8]  Won Chul Lee,et al.  Self-organized growth and self-assembly of nanostructures on 2D materials , 2017 .

[9]  Qibing Pei,et al.  Highly Flexible Silver Nanowire Electrodes for Shape‐Memory Polymer Light‐Emitting Diodes , 2011, Advanced materials.

[10]  Dae-Hyeong Kim,et al.  The quest for miniaturized soft bioelectronic devices , 2017, Nature Biomedical Engineering.

[11]  Taeghwan Hyeon,et al.  Cephalopod‐Inspired Miniaturized Suction Cups for Smart Medical Skin , 2016, Advanced healthcare materials.

[12]  K. Char,et al.  Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method. , 2010, Nano letters.

[13]  Zhaoqun Zhou,et al.  32.4: Quantum Dot Light Emitting Diodes for Full-color Active-matrix Displays , 2010 .

[14]  M. Bawendi,et al.  Colloidal quantum--dot light-emitting diodes with metal-oxide charge transport layers , 2008 .

[15]  Liangbing Hu,et al.  Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures , 2011, Advanced materials.

[16]  Benoit Dubertret,et al.  Quasi‐2D Colloidal Semiconductor Nanoplatelets for Narrow Electroluminescence , 2014 .

[17]  Dandan Zhang,et al.  Vacuum-free transparent quantum dot light-emitting diodes with silver nanowire cathode , 2015, Scientific Reports.

[18]  J. Y. Han,et al.  High-performance crosslinked colloidal quantum-dot light-emitting diodes , 2009 .

[19]  Dong Chan Kim,et al.  High‐Resolution Spin‐on‐Patterning of Perovskite Thin Films for a Multiplexed Image Sensor Array , 2017, Advanced materials.

[20]  Kookheon Char,et al.  Single-Step Synthesis of Quantum Dots with Chemical Composition Gradients , 2008 .

[21]  V. Bulović,et al.  High-efficiency quantum-dot light-emitting devices with enhanced charge injection , 2013, Nature Photonics.

[22]  Xiangang Luo,et al.  Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes , 2010, Advanced materials.

[23]  Yan Fu,et al.  Polyethylenimine Ethoxylated-Mediated All-Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device. , 2017, ACS nano.

[24]  Takao Someya,et al.  Ultrathin, highly flexible and stretchable PLEDs , 2013, Nature Photonics.

[25]  B. Dubertret,et al.  Colloidal nanoplatelets with two-dimensional electronic structure. , 2011, Nature materials.

[26]  Jin Jang,et al.  Semi-transparent quantum-dot light emitting diodes with an inverted structure , 2014 .

[27]  V. Bulović,et al.  Contact printing of quantum dot light-emitting devices. , 2008, Nano letters.

[28]  E. Sargent,et al.  Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer , 2003 .

[29]  Taeghwan Hyeon,et al.  Designed Assembly and Integration of Colloidal Nanocrystals for Device Applications , 2016, Advanced materials.

[30]  金洛煥,et al.  Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays , 2010 .

[31]  A. Alivisatos,et al.  Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer , 1994, Nature.

[32]  Jung Ho Yu,et al.  Route to the Smallest Doped Semiconductor: Mn(2+)-Doped (CdSe)13 Clusters. , 2015, Journal of the American Chemical Society.

[33]  Dae-Hyeong Kim,et al.  Heterogeneous stacking of nanodot monolayers by dry pick-and-place transfer and its applications in quantum dot light-emitting diodes , 2013, Nature Communications.

[34]  Jin-Song Hu,et al.  Zn-Cu-In-Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%. , 2016, Journal of the American Chemical Society.

[35]  Dae-Hyeong Kim,et al.  Wearable Sensing Systems with Mechanically Soft Assemblies of Nanoscale Materials , 2017 .

[36]  Jung Ho Yu,et al.  Dimension-controlled synthesis of CdS nanocrystals: from 0D quantum dots to 2D nanoplates. , 2012, Small.

[37]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[38]  John A Rogers,et al.  Double-heterojunction nanorod light-responsive LEDs for display applications , 2017, Science.

[39]  A. Alivisatos,et al.  Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer , 1997 .

[40]  Moonsub Shim,et al.  Double-heterojunction nanorods , 2014, Nature Communications.

[41]  Moungi G Bawendi,et al.  Air-stable operation of transparent, colloidal quantum dot based LEDs with a unipolar device architecture. , 2010, Nano letters.

[42]  V. Bulović,et al.  Large‐Area Ordered Quantum‐Dot Monolayers via Phase Separation During Spin‐Casting , 2005 .

[43]  Yei Hwan Jung,et al.  Stretchable silicon nanoribbon electronics for skin prosthesis , 2014, Nature Communications.

[44]  Cherie R. Kagan,et al.  Building devices from colloidal quantum dots , 2016, Science.

[45]  Zhibin Yu,et al.  User-interactive electronic skin for instantaneous pressure visualization. , 2013, Nature materials.

[46]  A. Rogach,et al.  Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications. , 2007, Small.

[47]  Louis Brus,et al.  Chemical Synthesis and Luminescence Applications of Colloidal Semiconductor Quantum Dots. , 2017, Journal of the American Chemical Society.

[48]  Benoit Dubertret,et al.  Cadmium-free CuInS2/ZnS quantum dots for sentinel lymph node imaging with reduced toxicity. , 2010, ACS nano.

[49]  D. Y. Yoon,et al.  Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure. , 2012, Nano letters.

[50]  Kookheon Char,et al.  R/G/B/Natural White Light Thin Colloidal Quantum Dot‐Based Light‐Emitting Devices , 2014, Advanced materials.

[51]  B. G. DeLacy,et al.  Transparent displays enabled by resonant nanoparticle scattering , 2014, Nature Communications.

[52]  Ji Hoon Kim,et al.  Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing , 2015, Nature Communications.

[53]  Yonggang Huang,et al.  Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. , 2010, Nature materials.

[54]  P. Jain,et al.  (CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites , 2009 .

[55]  P. Holloway,et al.  Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures , 2011 .

[56]  Hye Rim Cho,et al.  Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module , 2017, Science Advances.

[57]  J. L. Zhao,et al.  Improved Performance from Multilayer Quantum Dot Light‐Emitting Diodes via Thermal Annealing of the Quantum Dot Layer , 2007 .

[58]  Jian Xu,et al.  Employing heavy metal-free colloidal quantum dots in solution-processed white light-emitting diodes. , 2011, Nano letters.

[59]  Jung Ho Yu,et al.  Highly Efficient Copper-Indium-Selenide Quantum Dot Solar Cells: Suppression of Carrier Recombination by Controlled ZnS Overlayers. , 2015, ACS nano.

[60]  H. Goesmann,et al.  Nanoparticulate functional materials. , 2010, Angewandte Chemie.

[61]  Jung Ho Yu,et al.  Copper-indium-selenide quantum dot-sensitized solar cells. , 2013, Physical chemistry chemical physics : PCCP.

[62]  Dae-Hyeong Kim,et al.  Multifunctional wearable devices for diagnosis and therapy of movement disorders. , 2014, Nature nanotechnology.

[63]  U. Banin,et al.  Efficient Near-Infrared Polymer Nanocrystal Light-Emitting Diodes , 2002, Science.

[64]  Norris,et al.  Size dependence of exciton fine structure in CdSe quantum dots. , 1996, Physical review. B, Condensed matter.

[65]  Vladimir Lesnyak,et al.  Layer‐by‐Layer All‐Inorganic Quantum‐Dot‐Based LEDs: A Simple Procedure with Robust Performance , 2010 .

[66]  V. Bulović,et al.  Inkjet‐Printed Quantum Dot–Polymer Composites for Full‐Color AC‐Driven Displays , 2009 .

[67]  Ken-Tye Yong,et al.  New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine. , 2016, Chemical reviews.

[68]  V. Bulović,et al.  Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer. , 2007, Nano letters.

[69]  Hye Rim Cho,et al.  An endoscope with integrated transparent bioelectronics and theranostic nanoparticles for colon cancer treatment , 2015, Nature Communications.

[70]  Jongha Lee Synthesis, Photophysics and Applications of Organic Excited-state Intramolecular Proton Transfer (ESIPT) Materials , 2012 .

[71]  Ja Hoon Koo,et al.  Colloidal Synthesis of Uniform‐Sized Molybdenum Disulfide Nanosheets for Wafer‐Scale Flexible Nonvolatile Memory , 2016, Advanced materials.

[72]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[73]  Eun Kyung Lee,et al.  Full-colour quantum dot displays fabricated by transfer printing , 2011 .

[74]  Hyung Joon Shim,et al.  Wearable Electrocardiogram Monitor Using Carbon Nanotube Electronics and Color-Tunable Organic Light-Emitting Diodes. , 2017, ACS nano.

[75]  Xiao Wei Sun,et al.  Highly flexible, electrically driven, top-emitting, quantum dot light-emitting stickers. , 2014, ACS nano.

[76]  Heng Zhang,et al.  Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10 000 cd m-2. , 2017, Small.

[77]  V. Bulović,et al.  Selection of metal oxide charge transport layers for colloidal quantum dot LEDs. , 2009, ACS nano.

[78]  Taeghwan Hyeon,et al.  A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement , 2016, Science Advances.

[79]  Francesco Galeotti,et al.  High-Efficiency All-Solution-Processed Light-Emitting Diodes Based on Anisotropic Colloidal Heterostructures with Polar Polymer Injecting Layers. , 2015, Nano letters.

[80]  Byungki Kim,et al.  White‐Light‐Emitting Diodes with Quantum Dot Color Converters for Display Backlights , 2010, Advanced materials.

[81]  Yongwoo Kwon,et al.  Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots. , 2014, ACS nano.

[82]  Taeghwan Hyeon,et al.  Nanomaterial‐Based Soft Electronics for Healthcare Applications , 2016 .

[83]  Jung Ho Yu,et al.  Advances in the Colloidal Synthesis of Two-Dimensional Semiconductor Nanoribbons , 2013 .

[84]  Risto Myllylä,et al.  Display Technology Letters Inkjet Printed RGB Quantum Dot-Hybrid LED , 2010 .

[85]  Jinju Zheng,et al.  Shell-dependent electroluminescence from colloidal CdSe quantum dots in multilayer light-emitting diodes , 2009 .

[86]  Jingkang Wang,et al.  Near‐Band‐Edge Electroluminescence from Heavy‐Metal‐Free Colloidal Quantum Dots , 2011, Advanced materials.

[87]  T. Hyeon,et al.  Fabric‐Based Integrated Energy Devices for Wearable Activity Monitors , 2014, Advanced materials.

[88]  M. Kaltenbrunner,et al.  Ultraflexible organic photonic skin , 2016, Science Advances.

[89]  Nathan T. Shewmon,et al.  High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes. , 2015, Nano letters.

[90]  Eiji Ohtani,et al.  Electroluminescence from single monolayers of nanocrystals in molecular organic devices , 2022 .

[91]  NoSoung Myoung,et al.  Highly Efficient, Color-Reproducible Full-Color Electroluminescent Devices Based on Red/Green/Blue Quantum Dot-Mixed Multilayer. , 2015, ACS nano.

[92]  M. Petruska,et al.  Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers. , 2005, Nano letters.

[93]  Taeghwan Hyeon,et al.  Fully Stretchable Optoelectronic Sensors Based on Colloidal Quantum Dots for Sensing Photoplethysmographic Signals. , 2017, ACS nano.

[94]  Liang Li,et al.  One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection. , 2008, Journal of the American Chemical Society.

[95]  Kookheon Char,et al.  InP@ZnSeS, Core@Composition Gradient Shell Quantum Dots with Enhanced Stability , 2011 .

[96]  P. Guyot-Sionnest,et al.  Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals , 1996 .

[97]  Ja Hoon Koo,et al.  Nanomaterials for bioelectronics and integrated medical systems , 2018, Korean Journal of Chemical Engineering.

[98]  D. Jeon,et al.  White Light‐Emitting Diodes with Excellent Color Rendering Based on Organically Capped CdSe Quantum Dots and Sr3SiO5:Ce3+,Li+ Phosphors , 2008, Advanced materials.

[99]  Lee Soon Park,et al.  Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes. , 2012, Journal of the American Chemical Society.

[100]  Oleksandr Voznyy,et al.  Highly efficient quantum dot near-infrared light-emitting diodes , 2016, Nature Photonics.

[101]  Igor L. Medintz,et al.  Meta-analysis of cellular toxicity for cadmium-containing quantum dots. , 2016, Nature nanotechnology.

[102]  Lin-Wang Wang,et al.  Two- versus three-dimensional quantum confinement in indium phosphide wires and dots , 2003, Nature materials.

[103]  Donghee Son,et al.  Deformable devices with integrated functional nanomaterials for wearable electronics , 2016, Nano Convergence.

[104]  Gil Ju Lee,et al.  Wearable Force Touch Sensor Array Using a Flexible and Transparent Electrode , 2017 .

[105]  Cherie R. Kagan,et al.  Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. , 1996, Physical review. B, Condensed matter.

[106]  Tonino Greco,et al.  Semitransparent quantum dot light-emitting diodes by cadmium-free colloidal quantum dots. , 2014, Journal of nanoscience and nanotechnology.

[107]  Taeghwan Hyeon,et al.  Digital Doping in Magic-Sized CdSe Clusters. , 2016, ACS nano.

[108]  G. Gigli,et al.  Hybrid Light‐Emitting Diodes from Microcontact‐Printing Double‐Transfer of Colloidal Semiconductor CdSe/ZnS Quantum Dots onto Organic Layers , 2008 .

[109]  R. Janssen,et al.  Red, green, and blue quantum dot LEDs with solution processable ZnO nanocrystal electron injection layers , 2008 .

[110]  G. Bacher,et al.  Solution-Processed CuInS2-Based White QD-LEDs with Mixed Active Layer Architecture. , 2017, ACS applied materials & interfaces.

[111]  J. Vela,et al.  "Giant" multishell CdSe nanocrystal quantum dots with suppressed blinking. , 2008, Journal of the American Chemical Society.

[112]  Hye Rim Cho,et al.  Stretchable and Transparent Biointerface Using Cell‐Sheet–Graphene Hybrid for Electrophysiology and Therapy of Skeletal Muscle , 2016 .

[113]  Jung Ho Yu,et al.  High-resolution three-photon biomedical imaging using doped ZnS nanocrystals. , 2013, Nature materials.

[114]  Ji Hoon Kim,et al.  Reverse‐Micelle‐Induced Porous Pressure‐Sensitive Rubber for Wearable Human–Machine Interfaces , 2014, Advanced materials.

[115]  Shuming Chen,et al.  Highly transparent quantum-dot light-emitting diodes with sputtered indium-tin-oxide electrodes , 2016 .

[116]  P. Holloway,et al.  High-efficiency light-emitting devices based on quantum dots with tailored nanostructures , 2013, Nature Photonics.

[117]  Yi Cui,et al.  Solution-processed metal nanowire mesh transparent electrodes. , 2008, Nano letters.

[118]  Moonsub Shim,et al.  High efficiency and optical anisotropy in double-heterojunction nanorod light-emitting diodes. , 2015, ACS nano.

[119]  B. Dubertret,et al.  Towards non-blinking colloidal quantum dots. , 2008, Nature materials.

[120]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[121]  Patrick J. Whitham,et al.  Luminescent Colloidal Semiconductor Nanocrystals Containing Copper: Synthesis, Photophysics, and Applications. , 2016, Chemical reviews.

[122]  Taeghwan Hyeon,et al.  Ultrathin Quantum Dot Display Integrated with Wearable Electronics , 2017, Advanced materials.

[123]  Young Min Song,et al.  Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array , 2017, Nature Communications.

[124]  J. Rogers,et al.  Inorganic semiconducting materials for flexible and stretchable electronics , 2017, npj Flexible Electronics.

[125]  Taeghwan Hyeon,et al.  Ultra‐Wideband Multi‐Dye‐Sensitized Upconverting Nanoparticles for Information Security Application , 2017, Advanced materials.

[126]  A. Jen,et al.  Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer. , 2006, Nano letters.

[127]  T. Someya,et al.  Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. , 2009, Nature materials.

[128]  Christophe Lincheneau,et al.  Chemistry of InP Nanocrystal Syntheses , 2016 .

[129]  Minbaek Lee,et al.  Stretchable carbon nanotube charge-trap floating-gate memory and logic devices for wearable electronics. , 2015, ACS nano.

[130]  David Battaglia,et al.  Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared. , 2007, Journal of the American Chemical Society.

[131]  James S. Speck,et al.  Prospects for LED lighting , 2009 .

[132]  Claire M. Lochner,et al.  All-organic optoelectronic sensor for pulse oximetry , 2014, Nature Communications.

[133]  Samarth S. Raut,et al.  Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh , 2016, Science Translational Medicine.

[134]  Heesun Yang,et al.  High-Efficiency Cu–In–S Quantum-Dot-Light-Emitting Device Exceeding 7% , 2016 .

[135]  John A Rogers,et al.  High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. , 2015, Nano letters.

[136]  Yizheng Jin,et al.  Quantum‐Dot Light‐Emitting Diodes for Large‐Area Displays: Towards the Dawn of Commercialization , 2017, Advanced materials.

[137]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[138]  Zhibin Yu,et al.  Elastomeric polymer light-emitting devices and displays , 2013, Nature Photonics.

[139]  Xiaogang Peng,et al.  Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility , 1997 .

[140]  K. Char,et al.  Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots. , 2013, ACS nano.

[141]  M. Bawendi,et al.  Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals , 1998 .

[142]  Victor I. Klimov,et al.  Lifetime blinking in nonblinking nanocrystal quantum dots , 2012, Nature Communications.

[143]  Yonggang Huang,et al.  Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays , 2009, Science.

[144]  Jung-Tak Seo,et al.  Fully transparent quantum dot light-emitting diode integrated with graphene anode and cathode. , 2014, ACS nano.

[145]  Cherie R. Kagan,et al.  Electronic energy transfer in CdSe quantum dot solids. , 1996, Physical review letters.

[146]  M. Bawendi,et al.  Renal clearance of quantum dots , 2007, Nature Biotechnology.

[147]  Byeong Kwon Ju,et al.  Transparent InP Quantum Dot Light‐Emitting Diodes with ZrO2 Electron Transport Layer and Indium Zinc Oxide Top Electrode , 2016 .

[148]  Yi Cui,et al.  Scalable coating and properties of transparent, flexible, silver nanowire electrodes. , 2010, ACS nano.

[149]  R. Ghaffari,et al.  Recent Advances in Flexible and Stretchable Bio‐Electronic Devices Integrated with Nanomaterials , 2016, Advanced materials.

[150]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[151]  Yun Cheol Han,et al.  Highly Transparent and Flexible Organic Light‐Emitting Diodes with Structure Optimized for Anode/Cathode Multilayer Electrodes , 2015 .

[152]  Young Bum Lee,et al.  Stretchable Heater Using Ligand-Exchanged Silver Nanowire Nanocomposite for Wearable Articular Thermotherapy. , 2015, ACS nano.

[153]  Hye Rim Cho,et al.  A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. , 2016, Nature nanotechnology.

[154]  Dong Jun Lee,et al.  Transparent and Stretchable Interactive Human Machine Interface Based on Patterned Graphene Heterostructures , 2015 .

[155]  Myeongjin Park,et al.  Influence of Shell Thickness on the Performance of Light‐Emitting Devices Based on CdSe/Zn1‐XCdXS Core/Shell Heterostructured Quantum Dots , 2014, Advanced materials.

[156]  Kyoung Won Cho,et al.  Thermally Controlled, Patterned Graphene Transfer Printing for Transparent and Wearable Electronic/Optoelectronic System , 2015 .

[157]  Jong-Hyun Ahn,et al.  Extremely efficient flexible organic light-emitting diodes with modified graphene anode , 2012, Nature Photonics.

[158]  Taeghwan Hyeon,et al.  Chemical Synthesis, Doping, and Transformation of Magic-Sized Semiconductor Alloy Nanoclusters. , 2017, Journal of the American Chemical Society.

[159]  Taeghwan Hyeon,et al.  Extremely Vivid, Highly Transparent, and Ultrathin Quantum Dot Light‐Emitting Diodes , 2018, Advanced materials.

[160]  Yizheng Jin,et al.  Solution-processed, high-performance light-emitting diodes based on quantum dots , 2014, Nature.