The Structure and Evolution of Early Cosmological H II Regions

We study the formation and evolution of H II regions around the first stars formed at redshifts z = 10-30. We use a one-dimensional Lagrangian hydrodynamics code that self-consistently incorporates radiative transfer and nonequilibrium primordial gas chemistry. The star-forming region is defined as a spherical dense molecular gas cloud with a Population III star embedded at the center. We explore a large parameter space by considering, as plausible early star-forming sites, dark matter halos of mass Mhalo = 105-108 M☉, gas density profiles with a power-law index w = 1.5-2.25, and metal-free stars of mass Mstar = 25-500 M☉. The formation of the H II region is characterized by initial slow expansion of a weak D-type ionization front near the center, followed by rapid propagation of an R-type front throughout the outer gas envelope. We find that the transition between the two front types is indeed a critical condition for the complete ionization of halos of cosmological interest. In small-mass (≲106 M☉) halos, the transition takes place within a few 105 yr, yielding high escape fractions (>80%) of both ionizing and photodissociating photons. The gas is effectively evacuated by a supersonic shock, with the mean density within the halo decreasing to ≲1 cm-3 in a few million years. In larger mass (≳107 M☉) halos, the ionization front remains to be of D-type over the lifetime of the massive star, the H II region is confined well inside the virial radius, and the escape fractions are essentially zero. We derive an analytic formula that reproduces well the results of our simulations for the critical halo mass below which the gas is completely ionized. We discuss immediate implications of the present results for the star formation history and early reionization of the universe.

[1]  N. Yoshida,et al.  The Era of Massive Population III Stars: Cosmological Implications and Self-Termination , 2003, astro-ph/0310443.

[2]  J. Ostriker,et al.  Reionization, chemical enrichment and seed black holes from the first stars: is Population III important? , 2003, astro-ph/0310331.

[3]  M. Rees,et al.  Early Reionization by Miniquasars , 2003, astro-ph/0310223.

[4]  P. Shapiro,et al.  Photoevaporation of cosmological minihaloes during reionization , 2003, astro-ph/0307266.

[5]  J. Ostriker,et al.  X-ray pre-ionization powered by accretion on the first black holes – I. A model for the WMAP polarization measurement , 2003, astro-ph/0311003.

[6]  A. Loeb,et al.  The formation of the first low-mass stars from gas with low carbon and oxygen abundances , 2003, Nature.

[7]  M. Norman,et al.  Radiation Hydrodynamic Evolution of Primordial H II Regions , 2003, astro-ph/0310283.

[8]  H. Susa,et al.  Formation of Dwarf Galaxies during the Cosmic Reionization , 2003, astro-ph/0309202.

[9]  M. Halpern,et al.  First Year Wilkinson Microwave Anisotropy Probe Observations: Dark Energy Induced Correlation with Radio Sources , 2003, The Astrophysical Journal.

[10]  Z. Haiman,et al.  Fossil H ii regions: self-limiting star formation at high redshift , 2003, astro-ph/0307135.

[11]  Lars Hernquist,et al.  The First Supernova Explosions in the Universe , 2003, astro-ph/0305333.

[12]  V. Springel,et al.  Early Structure Formation and Reionization in a Warm Dark Matter Cosmology , 2003, astro-ph/0303622.

[13]  A. Venkatesan,et al.  Feedback from the First Supernovae in Protogalaxies: The Fate of the Generated Metals , 2003, astro-ph/0303449.

[14]  V. Springel,et al.  Cosmic reionization by stellar sources: population III stars , 2003, astro-ph/0303098.

[15]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[16]  N. Yoshida,et al.  Simulations of Early Structure Formation: Primordial Gas Clouds , 2003, astro-ph/0301645.

[17]  K. Nomoto,et al.  First-generation black-hole-forming supernovae and the metal abundance pattern of a very iron-poor star , 2003, Nature.

[18]  R. Cen The Universe Was Reionized Twice , 2002, astro-ph/0210473.

[19]  G. Bryan,et al.  Effects of a soft x-ray background on structure formation at high redshift , 2002, astro-ph/0209326.

[20]  G. Laughlin,et al.  Self-similar Champagne Flows in H II Regions , 2002, astro-ph/0209036.

[21]  L. Hernquist,et al.  Three Epochs of Star Formation in the High-Redshift Universe , 2002, astro-ph/0208447.

[22]  F. Nakamura,et al.  The Stellar Initial Mass Function in Primordial Galaxies , 2002, astro-ph/0201497.

[23]  D. Schaerer On the properties of massive Population III stars and metal-free stellar populations , 2001, astro-ph/0110697.

[24]  J. Shull,et al.  The Fate of the First Galaxies. I. Self-consistent Cosmological Simulations with Radiative Transfer , 2001, astro-ph/0110431.

[25]  Z. Haiman,et al.  Second-Generation Objects in the Universe: Radiative Cooling and Collapse of Halos with Virial Temperatures above 104 K , 2001, astro-ph/0108071.

[26]  S. Woosley,et al.  The Nucleosynthetic Signature of Population III , 2001, astro-ph/0107037.

[27]  P. Coppi,et al.  The Formation of the First Stars. I. The Primordial Star-forming Cloud , 2001, astro-ph/0102503.

[28]  K. Omukai,et al.  An upper limit on the mass of a primordial star due to the formation of an H ii region: the effect of ionizing radiation force , 2001, astro-ph/0112345.

[29]  Michael L. Norman,et al.  The Formation of the First Star in the Universe , 2001, Science.

[30]  J. Shull,et al.  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 14/09/00 HEATING AND IONIZATION OF THE INTERGALACTIC MEDIUM , 2001 .

[31]  T. Kitayama Formation of primordial galaxies in the UV background radiation , 2001 .

[32]  T. Kitayama,et al.  Criteria for the formation of Population III objects in the ultraviolet background radiation , 2001, astro-ph/0105293.

[33]  K. Nomoto,et al.  Nucleosynthesis of Zinc and Iron Peak Elements in Population III Type II Supernovae: Comparison with Abundances of Very Metal Poor Halo Stars , 2001, astro-ph/0103241.

[34]  G. Bryan,et al.  Simulations of Pregalactic Structure Formation with Radiative Feedback , 2000, astro-ph/0007198.

[35]  Chris L. Fryer,et al.  Pair-Instability Supernovae, Gravity Waves, and Gamma-Ray Transients , 2000, The Astrophysical Journal.

[36]  R. Somerville,et al.  Profiles of dark haloes: evolution, scatter and environment , 1999, astro-ph/9908159.

[37]  J. Shull,et al.  Feedback from Galaxy Formation: Production and Photodissociation of Primordial H2 , 2000, astro-ph/0012335.

[38]  Hajime SusaTetsu Kitayama Collapse of low-mass clouds in the presence of a UV radiation field , 2000, astro-ph/0004303.

[39]  T. Kitayama,et al.  Radiation—hydrodynamical collapse of pre-galactic clouds in the ultraviolet background , 2000, astro-ph/0004060.

[40]  H. Couchman,et al.  Simulation of Primordial Object Formation , 2000, astro-ph/0003079.

[41]  H. Susa,et al.  Formation of Primordial Galaxies under Ultraviolet Background Radiation , 2000, astro-ph/0001169.

[42]  J. Shull,et al.  Feedback from Galaxy Formation: Escaping Ionizing Radiation from Galaxies at High Redshift , 1999, astro-ph/9912006.

[43]  T. Kitayama,et al.  Formation of Subgalactic Clouds under Ultraviolet Background Radiation , 1999, astro-ph/9908084.

[44]  M. Rees,et al.  The Radiative Feedback of the First Cosmological Objects , 1999, astro-ph/9903336.

[45]  K. Omukai,et al.  Photodissociative Regulation of Star Formation in Metal-free Pregalactic Clouds , 1999, astro-ph/9904303.

[46]  T. Abel,et al.  Radiative Transfer Effects during Photoheating of the Intergalactic Medium , 1999, astro-ph/9903102.

[47]  Abraham Loeb,et al.  The Photoevaporation of Dwarf Galaxies during Reionization , 1999, astro-ph/9901114.

[48]  Martin J. Rees,et al.  Radiative Transfer in a Clumpy Universe. III. The Nature of Cosmological Ionizing Sources , 1998, astro-ph/9809058.

[49]  Mikhail Shashkov,et al.  Formulations of Artificial Viscosity for Multi-dimensional Shock Wave Computations , 1998 .

[50]  M. Umemura,et al.  A Criterion for Photoionization of Pregalactic Clouds Exposed to Diffuse Ultraviolet Background Radiation , 1998, astro-ph/9806046.

[51]  M. Norman,et al.  First Structure Formation. I. Primordial Star-forming Regions in Hierarchical Models , 1997, astro-ph/9705131.

[52]  J. Kepner,et al.  The Delayed Formation of Dwarf Galaxies , 1997, astro-ph/9704076.

[53]  J. Ostriker,et al.  Reionization of the Universe and the Early Production of Metals , 1996, astro-ph/9612127.

[54]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[55]  M. Rees,et al.  Destruction of Molecular Hydrogen during Cosmological Reionization , 1996, astro-ph/9608130.

[56]  Max Tegmark,et al.  How Small Were the First Cosmological Objects? , 1996, astro-ph/9603007.

[57]  F. Bertoldi,et al.  Structure of Stationary Photodissociation Fronts , 1996, astro-ph/9603032.

[58]  M. Rees,et al.  H(2) cooling of primordial gas triggered by UV irradiation , 1995, astro-ph/9511126.

[59]  D. Weinberg,et al.  Hydrodynamic Simulations of Galaxy Formation. II. Photoionization and the Formation of Low Mass Galaxies , 1995, astro-ph/9510154.

[60]  M. Haehnelt Momentum transfer by an internal source of ionizing radiation: an important feedback process during galaxy formation? , 1994, astro-ph/9410079.

[61]  D. Weinberg,et al.  Hydrodynamic Simulations of Galaxy Formation. I. Dissipation and the Maximum Mass of Galaxies , 1994, astro-ph/9410009.

[62]  P. Stancil CONTINUOUS ABSORPTION BY HE2+ AND H2+ IN COOL WHITE DWARFS , 1994 .

[63]  M. Fukugita,et al.  Reionization during hierarchical clustering in a universe dominated by cold dark matter , 1993, astro-ph/9309036.

[64]  G. Efstathiou Suppressing the formation of dwarf galaxies via photoionization , 1992 .

[65]  P. Bodenheimer,et al.  On the formation and expansion of H II regions , 1990 .

[66]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[67]  A. Szalay,et al.  Lyman-Alpha Clouds as a Relic of Primordial Density Fluctuations , 1988 .

[68]  P. Shapiro,et al.  COSMOLOGICAL H II REGIONS AND THE PHOTOIONIZATION OF THE INTERGALACTIC MEDIUM. , 1986 .

[69]  M. Rees,et al.  Pregalactic evolution in cosmologies with cold dark matter , 1986 .

[70]  H. Yorke The Dynamical Evolution of H II Regions—Recent Theoretical Developments , 1986 .

[71]  M. Rees Lyman absorption lines in quasar spectra: evidence for gravitationally-confined gas in dark minihaloes , 1986 .

[72]  E. Bertschinger Self-similar secondary infall and accretion in an Einstein-de Sitter universe , 1985 .

[73]  D. Mihalas,et al.  Foundations of Radiation Hydrodynamics , 1985 .

[74]  M. Umemura,et al.  Thermal and Dynamical Evolution of Intergalactic Clouds , 1984 .

[75]  J. R. Bond,et al.  The Evolution and fate of Very Massive Objects , 1984 .

[76]  G. Welter The structure and dynamics of H II regions , 1980 .

[77]  A. W. Wishart The bound-free photo-detachment cross-section of H- , 1979 .

[78]  Lyman Spitzer,et al.  Physical processes in the interstellar medium , 1998 .

[79]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae , 1976 .

[80]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .

[81]  Z. Barkat,et al.  DYNAMICS OF SUPERNOVA EXPLOSION RESULTING FROM PAIR FORMATION. , 1967 .

[82]  L. Howarth Similarity and Dimensional Methods in Mechanics , 1960 .

[83]  J. Cole,et al.  Similarity and Dimensional Methods in Mechanics , 1960 .

[84]  B. Strömgren The Physical State of Interstellar Hydrogen. , 1939 .