Intrinsic Wrench Estimation and Its Performance Index for Multisegment Continuum Robots

This paper presents the intrinsic capability of full-wrench estimation of multisegment continuum robots with multiple flexible backbones. Intrinsic-full-wrench estimation refers to the ability of continuum robots to also serve as force and moment sensors by using measurements of axial loads on their backbones. This end-effector-as-sensor approach fulfills the rapidly increasing needs for miniature-robotic-surgical tools with haptic sensing ability subject to various limitations, such as size, magnetic resonance imaging (MRI) compatibility, sterilizability, etc. A performance index for the intrinsic wrench-sensing capability is introduced and evaluated to show how this index can serve as a design guide for continuum robots that provide force sensing.

[1]  Ian D. Walker,et al.  Practical Kinematics for Real-Time Implementation of Continuum Robots , 2006, IEEE Transactions on Robotics.

[2]  Kotaro Tadano,et al.  Development of 4-DOFs forceps with force sensing using pneumatic servo system , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[3]  Koji Ikuta,et al.  Hyper-finger for Remote Minimally Invasive Surgery in Deep Area , 2002, MICCAI.

[4]  Kai Xu,et al.  An Investigation of the Intrinsic Force Sensing Capabilities of Continuum Robots , 2008, IEEE Transactions on Robotics.

[5]  広瀬 茂男,et al.  Biologically inspired robots : snake-like locomotors and manipulators , 1993 .

[6]  Mahdi Tavakoli,et al.  A force reflective master-slave system for minimally invasive surgery , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[7]  Russell H. Taylor,et al.  A dexterous system for laryngeal surgery , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[8]  Alana Sherman,et al.  Design of bilateral teleoperation controllers for haptic exploration and telemanipulation of soft environments , 2002, IEEE Trans. Robotics Autom..

[9]  Mamoru Mitsuishi,et al.  Force-Feedback Augmentation Modes in the Laparoscopic Minimally Invasive Telesurgical System , 2007 .

[10]  Shigeo Hirose,et al.  Biologically Inspired Robots: Snake-Like Locomotors and Manipulators , 1993 .

[11]  Allison M. Okamura,et al.  Sensor/Actuator Asymmetries in Telemanipulators: Implications of Partial Force Feedback , 2006, 2006 14th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems.

[12]  Antonio Bicchi,et al.  A criterion for optimal design of multi-axis force sensors , 1992, Robotics Auton. Syst..

[13]  Peter Cave,et al.  Biologically Inspired Robots: Serpentile Locomotors and Manipulators , 1993 .

[14]  Ian A. Gravagne,et al.  Kinematic transformations for remotely-actuated planar continuum robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[15]  Masaru Uchiyama,et al.  Optimal Geometric Structures of Force/Torque Sensors , 1995, Int. J. Robotics Res..

[16]  Ashitava Ghosal,et al.  A force–torque sensor based on a Stewart Platform in a near-singular configuration , 2004 .

[17]  Masaru Uchiyama,et al.  A Systematic Design Procedure to Minimize a Performance Index for Robot Force Sensors , 1991 .

[18]  Bernhard Kübler,et al.  Prototype of Instrument for Minimally Invasive Surgery with 6-Axis Force Sensing Capability , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[19]  Ian A. Gravagne,et al.  Manipulability, force, and compliance analysis for planar continuum manipulators , 2002, IEEE Trans. Robotics Autom..

[20]  S. Warisawa,et al.  Force Feedback Augmentation Modes in the Laparoscopic Minimal Invasive Telesurgical System , 2006, The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006..

[21]  Ian A. Gravagne,et al.  On the kinematics of remotely-actuated continuum robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[22]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[23]  A. Bicchi A Criterion for the Optimal Design of Multiaxis Force Sensors , 1990 .

[24]  Christopher R. Wagner,et al.  The role of force feedback in surgery: analysis of blunt dissection , 2002, Proceedings 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. HAPTICS 2002.

[25]  Shigeyuki Shimachi,et al.  New sensing method of force acting on instrument for laparoscopic robot surgery , 2004, CARS.

[26]  Cornel Sultan,et al.  A force and torque tensegrity sensor , 2004 .