Generalized radix representations and dynamical systems II

We are concerned with families of dynamical systems which are related to generalized radix representations. The properties of these dynamical systems lead to new results on the characterization of bases of Pisot number systems as well as canonical number systems.

[1]  Walter Penney,et al.  A ``Binary'' System for Complex Numbers , 1965, JACM.

[2]  Robert F. Tichy,et al.  α-expansions, linear recurrences, and the sum-of-digits function , 1991 .

[3]  FROM NUMBER SYSTEMS TO SHIFT RADIX SYSTEMS , 2005 .

[4]  Randolph B. Tarrier,et al.  Groups , 1973, Algebra.

[5]  Shigeki Akiyama,et al.  On the boundary of self affine tilings generated by Pisot numbers , 2002 .

[6]  Brenda Praggastis,et al.  Numeration systems and Markov partitions from self similar tilings , 1999 .

[7]  Attila Pethö On a polynomial transformation and its application to the construction of a public key cryptosystem , 1991 .

[8]  Béla Kovács Canonical number systems in algebraic number fields , 1981 .

[9]  Donald E. Knuth,et al.  A imaginary number system , 1960, Commun. ACM.

[10]  J. Thuswaldner,et al.  Digit systems in polynomial rings over finite fields , 2003 .

[11]  Generalized radix representations and dynamical systems III , 2008 .

[12]  K. Schmidt,et al.  On Periodic Expansions of Pisot Numbers and Salem Numbers , 1980 .

[13]  Shigeki Akiyama,et al.  Remarks on a conjecture on certain integer sequences , 2006, Period. Math. Hung..

[14]  Boris Solomyak,et al.  Finite beta-expansions , 1992, Ergodic Theory and Dynamical Systems.

[15]  M. Mignotte,et al.  Polynomials: An Algorithmic Approach , 1999 .

[16]  Shigeki Akiyama,et al.  Generalized radix representations and dynamical systems. IV , 2008 .

[17]  Shigeki Akiyama,et al.  Cubic Pisot units with finite beta expansions , 2004 .

[18]  Shigeki Akiyama,et al.  Generalized radix representations and dynamical systems. I , 2005 .

[19]  A. Kechris Classical descriptive set theory , 1987 .

[20]  S. Akiyama On a generalization of the radix representation-a survey , 2004 .

[21]  Andreas Stein,et al.  High Primes and Misdemeanours: Lectures in Honour of the 60th Birthday of Hugh Cowie Williams , 2004 .

[22]  Shigeki Akiyama,et al.  On canonical number systems , 2002, Theor. Comput. Sci..

[23]  Yoichiro Takahashi,et al.  Markov subshifts and realization of β-expansions , 1974 .

[24]  A. Brauer,et al.  On algebraic equations with all but one root in the interior of the unit circle. To my teacher and former colleague Erhard Schmidt on his 75th birthday , 1950 .

[25]  I. Kátai,et al.  Canonical number systems in imaginary quadratic fields , 1981 .

[26]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[27]  ELEMENTARY PROPERTIES OF CANONICAL NUMBER SYSTEMS IN QUADRATIC FIELDS , 1998 .

[28]  Christiane Frougny,et al.  Linear Numeration Systems of Order Two , 1988, Inf. Comput..

[29]  Harold Davenport,et al.  On a Principle of Lipschitz , 1951 .

[30]  P. Arnoux,et al.  Pisot substitutions and Rauzy fractals , 2001 .

[31]  A. Rényi Representations for real numbers and their ergodic properties , 1957 .

[32]  Jeffrey C. Lagarias,et al.  Self-affine tiles in ℝn , 1996 .

[33]  Cubic CNS polynomials, notes on a conjecture of W.J. Gilbert , 2003 .

[34]  J. Thuswaldner,et al.  On the characterization of canonical number systems , 2004 .

[35]  W. Parry On theβ-expansions of real numbers , 1960 .

[36]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[37]  William J. Gilbert Radix representations of quadratic fields , 1981 .

[38]  Hui Rao,et al.  A CERTAIN FINITENESS PROPERTY OF PISOT NUMBER SYSTEMS , 2004 .