Electronic spectroscopy of CoNe+ via mass-selected photodissociation.

The CoNe(+) diatomic cation is produced by laser vaporization in a pulsed-nozzle source and studied with photodissociation spectroscopy at visible wavelengths. Vibronic structure is assigned to the (3)Π(2) ← (3)Δ(3) band system correlating to the Co(+)((3)P(2) ← (3)F(4)) + Ne asymptote. The origin band (13,529 cm(-1)) and a progression of 14 other vibrational bands are detected ending in the dissociation limit at 14,191 cm(-1). The excited state dissociation energy is therefore D(0)(') = 662 cm(-1), and an energetic cycle using this, the origin band energy, and the atomic transition produces a ground state dissociation energy of D(0)(") = 930 cm(-1). The excited state vibrational frequency is 116.1 cm(-1). A rotationally resolved study of the origin band confirms the electronic transition assignment and provides the bond distance of r(0)(") = 2.36 Å. The properties of CoNe(+) are compared to those of other CoRG(+) and MNe(+) complexes studied previously.

[1]  Edmond P. F. Lee,et al.  Theoretical study of M(+)-RG complexes (M = Ga, In; RG = He-Rn). , 2011, The journal of physical chemistry. A.

[2]  Adrian M. Gardner,et al.  Theoretical study of Al+-RG (RG = He-Rn). , 2010, The Journal of chemical physics.

[3]  Adrian M. Gardner,et al.  Theoretical study of M(+)-RG and M(2+)-RG complexes and transport of M(+) through RG (M = Be and Mg, RG = He-Rn). , 2010, The journal of physical chemistry. A.

[4]  Edmond P. F. Lee,et al.  Theoretical study of the bonding in M(n+)-RG complexes and the transport of M(n+) through rare gas (M=Ca, Sr, and Ra; n=1 and 2; and RG=He-Rn). , 2010, The Journal of chemical physics.

[5]  Edmond P. F. Lee,et al.  Theoretical study of Ba(n+)-RG (RG = rare gas) complexes and transport of Ba(n+) through RG (n = 1,2; RG = He-Rn). , 2009, The Journal of chemical physics.

[6]  Edmond P. F. Lee,et al.  Interaction potential of Al3+–Ne and the mobility of Al3+ in He and Ne , 2008 .

[7]  T. G. Wright,et al.  Analysis of the bonding in alkali-cation/Rg complexes (Rg = He–Xe) using a simple model potential , 2007 .

[8]  R. Metz Photofragment spectroscopy of covalently bound transition metal complexes: a window into C–H and C–C bond activation by transition metal ions , 2004 .

[9]  J. M. Farrar Size-dependent reactivity in open shell metal-ion polar solvent clusters: spectroscopic probes of electronic-vibration coupling, oxidation and ionization , 2003 .

[10]  M. Duncan Infrared spectroscopy to probe structure and dynamics in metal ion-molecule complexes , 2003 .

[11]  A. Stace Metal Ion Solvation in the Gas Phase: The Quest for Higher Oxidation States , 2002 .

[12]  W. Breckenridge,et al.  Bonding in ground-state and excited-state A+.Rg van der Waals ions (A = atom, Rg = rare-gas atom): a model-potential analysis. , 2002, Chemical reviews.

[13]  M. Velegrakis,et al.  Vibrational constants and binding energies of Sr+Xe , 2001 .

[14]  Edmond P. F. Lee,et al.  High-quality interatomic potential for Li + ·He , 2001 .

[15]  M. Duncan Frontiers in the spectroscopy of mass-selected molecular ions , 2000 .

[16]  S. Xantheas,et al.  Photofragmentation spectra and structures of Sr+Arn, n=2–8 clusters: Experiment and theory , 1998 .

[17]  M. Velegrakis,et al.  Vibrational constants and binding energies for the A 2Π and X 2Σ states of Sr+Kr from photodissociation spectroscopy , 1998 .

[18]  W. Koch,et al.  A study of the low-lying states of CaAr+ and CaKr+ , 1998 .

[19]  S. Xantheas,et al.  Spectroscopic constants of the X 2Σ+ and A 2Π states of Sr+Ar from first principles: Comparison with experiment , 1998 .

[20]  D. Bellert,et al.  The binding energy and vibronic structure of NbXe , 1997 .

[21]  M. Velegrakis,et al.  Photodissociation spectrum of Sr+Ne , 1997 .

[22]  M. Duncan Spectroscopy of metal ion complexes: gas-phase models for solvation. , 1997, Annual review of physical chemistry.

[23]  D. Bellert,et al.  The adiabatic binding energy of NbAr , 1996 .

[24]  D. Bellert,et al.  The binding energy of VXe , 1996 .

[25]  M. Velegrakis,et al.  Photofragmentation spectrum of the Sr+Ar complex , 1996 .

[26]  D. Bellert,et al.  The CX transition in CaKr+ and CaAr+ , 1995 .

[27]  D. Bellert,et al.  The bond length of CoKr , 1995 .

[28]  M. Duncan,et al.  ROTATIONALLY RESOLVED PHOTODISSOCIATION SPECTROSCOPY OF MG+-AR , 1995 .

[29]  C. Bauschlicher,et al.  A study of the X 2Σ+ and A 2Π states of MgAr+ and MgKr+ , 1995 .

[30]  D. Bellert,et al.  The bond length of ZrAr , 1995 .

[31]  D. Bellert,et al.  SPIN FORBIDDEN TRANSITIONS IN NIAR , 1994 .

[32]  D. Bellert,et al.  The ground state of CoAr , 1994 .

[33]  C. Yeh,et al.  Photodissociation spectroscopy of Mg+–rare gas complexes , 1994 .

[34]  M. Bowers,et al.  Determination of potential energy curves for ground and metastable excited state transition metal ions interacting with helium and neon using electronic state chromatography , 1992 .

[35]  C. Bauschlicher,et al.  Theoretical study of metal ions bound to He, Ne, and Ar , 1992 .

[36]  M. Bowers,et al.  Transition-metal ion-rare gas clusters : bond strengths and molecular parameters for Co+(He/Ne)n, Ni+(He/Ne)n, and Cr+(He/Ne/Ar) , 1991 .

[37]  P. Brucat,et al.  Spectroscopically determined binding energies of CrAr+ and Cr(N2)+ , 1991 .

[38]  P. Brucat,et al.  Spectroscopic characterization of inductive binding in ions , 1990 .

[39]  Hammond,et al.  Theoretical study of the interaction of ionized transition metals (Cr,Mn,Fe,Co,Ni,Cu) with argon. , 1990, Physical review. B, Condensed matter.

[40]  M. Bowers,et al.  State-selected mobilities of atomic cobalt ions , 1990 .

[41]  P. Brucat,et al.  Characterization of transition metal-rare-gas cations: VAr + and VKr + , 1989 .

[42]  C. Bauschlicher,et al.  Theoretical study of metal noble‐gas positive ions , 1989 .

[43]  P. Brucat,et al.  Resonant photodissociation of CoAr+ and CoKr+: Analysis of vibrational structure , 1989 .

[44]  P. Brucat,et al.  On the nature of NiAr , 1988 .

[45]  P. Brucat,et al.  The unique stability of CoAr6+: Coordination complex or close-packed structure? , 1988 .

[46]  D. M. Bishop,et al.  On the dipole and higher polarizabilities of Ne(1S) , 1985 .

[47]  G. Herzberg,et al.  Constants of diatomic molecules , 1979 .

[48]  M. Zoppi,et al.  Determination of collision induced polarizability in Ar, Kr, and Xe by means of collision induced scattering analysis and empirical pair potentials , 1976 .

[49]  J. Steinfeld Molecules and radiation , 1974 .

[50]  A. F. Wells,et al.  Structural Inorganic Chemistry , 1971, Nature.

[51]  R. Bernstein,et al.  Dissociation Energy and Long‐Range Potential of Diatomic Molecules from Vibrational Spacings of Higher Levels , 1970 .

[52]  R. Cole,et al.  Dielectric Constants of Imperfect Gases. III. Atomic Gases, Hydrogen, and Nitrogen , 1967 .