A class of monotone interpolation schemes

Abstract This paper discusses a class of monotone (nonoscillatory) interpolation schemes convenient for applications with a variety of problems arising in computational fluid dynamics. These interpolators derive from the flux-corrected-transport finite difference advection schemes. It is shown that any known dissipative advection algorithm may be implemented as an interpolation scheme. The resulting interpolation procedure retains the formal accuracy of the advection scheme and offers such attractive computational properties as preservation of a sign or monotonicity of the interpolated variable. The derived class of interpolators consists of schemes of different levels of accuracy, efficiency, and complexity reflecting a rich variety of available advection schemes. Theoretical considerations are illustrated with idealized examples and selected applications to atmospheric fluid dynamics problems.

[1]  Philip J. Rasch,et al.  On Shape-Preserving Interpolation and Semi-Lagrangian Transport , 1990, SIAM J. Sci. Comput..

[2]  R. Pielke,et al.  The forward-in-time upstream advection scheme:extension to higher orders , 1987 .

[3]  J. Oliger,et al.  Adaptive grid refinement for numerical weather prediction , 1989 .

[4]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[5]  P. Smolarkiewicz A Fully Multidimensional Positive Definite Advection Transport Algorithm with Small Implicit Diffusion , 1984 .

[6]  Philip J. Rasch,et al.  Monotone Advection on the Sphere: An Eulerian Versus Semi-Lagrangian Approach , 1991 .

[7]  Richard A. Anthes,et al.  Development of Hydrodynamic Models Suitable for Air Pollution and Other Mesometerological Studies , 1978 .

[8]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[9]  Piotr K. Smolarkiewicz,et al.  Low Froude Number Flow Past Three-Dimensional Obstacles. Part I: Baroclinically Generated Lee Vortices , 1989 .

[10]  J. Hunt,et al.  Experiments on stably and neutrally stratified flow over a model three-dimensional hill , 1980, Journal of Fluid Mechanics.

[11]  P. Smolarkiewicz A Simple Positive Definite Advection Scheme with Small Implicit Diffusion , 1983 .

[12]  W. Grabowski,et al.  The multidimensional positive definite advection transport algorithm: nonoscillatory option , 1990 .

[13]  John K. Dukowicz,et al.  Accurate conservative remapping (rezoning) for arbitrary Lagrangian-Eulerian computations , 1987 .

[14]  Piotr K. Smolarkiewicz,et al.  Low Froude Number Flow Past Three-Dimensional Obstacles. Part II: Upwind Flow Reversal Zone , 1990 .

[15]  P. Smolarkiewicz,et al.  The multidimensional positive definite advection transport algorithm: further development and applications , 1986 .

[16]  J. Gillis,et al.  Methods in Computational Physics , 1964 .

[17]  W. P. Crowley,et al.  NUMERICAL ADVECTION EXPERIMENTS1 , 1968 .

[18]  R. T. Williams,et al.  Semi-Lagrangian Solutions to the Inviscid Burgers Equation , 1990 .

[19]  Jay P. Boris,et al.  Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works , 1973 .

[20]  John K. Dukowicz Conservative rezoning (remapping) for general quadrilateral meshes , 1984 .

[21]  C. W. Kreitzberg,et al.  A Time-Dependent Lateral Boundary Scheme for Limited-Area Primitive Equation Models , 1976 .