A class of monotone interpolation schemes
暂无分享,去创建一个
[1] Philip J. Rasch,et al. On Shape-Preserving Interpolation and Semi-Lagrangian Transport , 1990, SIAM J. Sci. Comput..
[2] R. Pielke,et al. The forward-in-time upstream advection scheme:extension to higher orders , 1987 .
[3] J. Oliger,et al. Adaptive grid refinement for numerical weather prediction , 1989 .
[4] S. Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .
[5] P. Smolarkiewicz. A Fully Multidimensional Positive Definite Advection Transport Algorithm with Small Implicit Diffusion , 1984 .
[6] Philip J. Rasch,et al. Monotone Advection on the Sphere: An Eulerian Versus Semi-Lagrangian Approach , 1991 .
[7] Richard A. Anthes,et al. Development of Hydrodynamic Models Suitable for Air Pollution and Other Mesometerological Studies , 1978 .
[8] P. Sweby. High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .
[9] Piotr K. Smolarkiewicz,et al. Low Froude Number Flow Past Three-Dimensional Obstacles. Part I: Baroclinically Generated Lee Vortices , 1989 .
[10] J. Hunt,et al. Experiments on stably and neutrally stratified flow over a model three-dimensional hill , 1980, Journal of Fluid Mechanics.
[11] P. Smolarkiewicz. A Simple Positive Definite Advection Scheme with Small Implicit Diffusion , 1983 .
[12] W. Grabowski,et al. The multidimensional positive definite advection transport algorithm: nonoscillatory option , 1990 .
[13] John K. Dukowicz,et al. Accurate conservative remapping (rezoning) for arbitrary Lagrangian-Eulerian computations , 1987 .
[14] Piotr K. Smolarkiewicz,et al. Low Froude Number Flow Past Three-Dimensional Obstacles. Part II: Upwind Flow Reversal Zone , 1990 .
[15] P. Smolarkiewicz,et al. The multidimensional positive definite advection transport algorithm: further development and applications , 1986 .
[16] J. Gillis,et al. Methods in Computational Physics , 1964 .
[17] W. P. Crowley,et al. NUMERICAL ADVECTION EXPERIMENTS1 , 1968 .
[18] R. T. Williams,et al. Semi-Lagrangian Solutions to the Inviscid Burgers Equation , 1990 .
[19] Jay P. Boris,et al. Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works , 1973 .
[20] John K. Dukowicz. Conservative rezoning (remapping) for general quadrilateral meshes , 1984 .
[21] C. W. Kreitzberg,et al. A Time-Dependent Lateral Boundary Scheme for Limited-Area Primitive Equation Models , 1976 .