Influence of Hot Consolidation Conditions and Cr-Alloying on Microstructure and Creep in New-Generation ODS Alloy at 1100 °C

The coarse-grained new-generation Fe-Al-Y2O3-based oxide dispersion strengthened (ODS) alloys contain 5 vol.% homogeneously dispersed yttria nano-precipitates and exhibit very promising creep and oxidation resistance above 1000 °C. The alloy is prepared by the consolidation of mechanically alloyed powders via hot rolling followed by secondary recrystallization. The paper presents a systematic study of influence of rolling temperature on final microstructure and creep at 1100 °C for two grades (Fe-10Al-4Y2O3 and Fe-9Al-14Cr-4Y2O3 in wt%) of new-generation ODS alloys. The hot rolling temperatures exhibit a rather wide processing window and the influence of Cr-alloying on creep properties is evaluated as only slightly positive.

[1]  J. Svoboda,et al.  The Influence of Aluminum Content on Oxidation Resistance of New-Generation ODS Alloy at 1200 °C , 2020, Metals.

[2]  J. Svoboda,et al.  Fundamental Improvement of Creep Resistance of New-Generation Nano-Oxide Strengthened Alloys via Hot Rotary Swaging Consolidation , 2020, Materials.

[3]  H. Riedel,et al.  Modelling of Processing Steps of New Generation ODS Alloys , 2020, Metallurgical and Materials Transactions A.

[4]  M. Auger,et al.  Nanoscale analysis of ion irradiated ODS 14YWT ferritic alloy , 2020 .

[5]  M. Hermans,et al.  Effect of mechanical alloying and spark plasma sintering on the microstructure and mechanical properties of ODS Eurofer , 2019, Materials & Design.

[6]  Haodong Jia,et al.  The effect of thermal-aging on the microstructure and mechanical properties of 9Cr ferritic/martensitic ODS alloy , 2019, Journal of Nuclear Materials.

[7]  Ying Yang,et al.  Microstructure evolution and mechanical properties of ODS FeCrAl alloys fabricated by an internal oxidation process , 2019, Materials Science and Engineering: A.

[8]  J. Svoboda,et al.  Kinetics of interaction of impurity interstitials with dislocations revisited , 2019, Progress in Materials Science.

[9]  S. Schmauder,et al.  Enhanced strength and high temperature resistance of 25Cr20Ni ODS austenitic alloy through thermo-mechanical treatment and addition of Mo , 2019, Fusion Engineering and Design.

[10]  J. Svoboda,et al.  Microstructure Evolution in ODS Alloys with a High-Volume Fraction of Nano Oxides , 2018, Metals.

[11]  S. Zinkle,et al.  Influence of mechanical alloying and extrusion conditions on the microstructure and tensile properties of Low-Cr ODS FeCrAl alloys , 2018, Journal of Nuclear Materials.

[12]  G. Odette,et al.  Texture evolution and microcracking mechanisms in as-extruded and cross-rolled conditions of a 14YWT nanostructured ferritic alloy , 2018, Acta Materialia.

[13]  Chenyang Lu,et al.  Effects of Y2O3, La2O3 and CeO2 additions on microstructure and mechanical properties of 14Cr-ODS ferrite alloys produced by spark plasma sintering , 2017 .

[14]  F. Šiška,et al.  Kinetic study of static recrystallization in an Fe–Al–O ultra-fine-grained nanocomposite , 2017 .

[15]  A. Macháčková,et al.  Study of structure and residual stresses in cold rotary swaged tungsten heavy alloy , 2017 .

[16]  K. Laha,et al.  Development of Oxide Dispersion Strengthened (ODS) Ferritic Steel Through Powder Forging , 2017, Journal of Materials Engineering and Performance.

[17]  T. Byun,et al.  Influence of processing on the microstructure and mechanical properties of 14YWT , 2016 .

[18]  T. Byun,et al.  Fracture behavior of 9Cr nanostructured ferritic alloy with improved fracture toughness , 2014 .

[19]  J. Kim,et al.  Temperature dependence of strengthening mechanisms in the nanostructured ferritic alloy 14YWT: Part I—Mechanical and microstructural observations , 2013 .

[20]  John P. Shingledecker,et al.  Oxide dispersion-strengthened steels: A comparison of some commercial and experimental alloys , 2005 .

[21]  P. Fratzl,et al.  A thermodynamic approach to grain growth and coarsening , 2003 .

[22]  Philippe Spätig,et al.  Microstructure and mechanical properties of two ODS ferritic/martensitic steels , 2002 .

[23]  P. Lukas,et al.  Model of creep in (001)-oriented superalloy single crystals , 1998 .

[24]  A. Argon,et al.  Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates , 1994 .

[25]  M. Harada,et al.  Tube manufacturing and mechanical properties of oxide dispersion strengthened ferritic steel , 1993 .

[26]  R. Fromont,et al.  An ODS material with outstanding creep and oxidation resistance above 1100°C , 1992 .

[27]  H. Martinz,et al.  New Iron-Based ODS-Superalloys for High Demanding Applications , 1991 .

[28]  Joachim Rösler,et al.  A new model-based creep equation for dispersion strengthened materials , 1990 .

[29]  Hermann Riedel,et al.  Fracture at high temperatures , 1987 .