Mistranslation of Membrane Proteins and Two-Component System Activation Trigger Antibiotic-Mediated Cell Death

[1]  J. Wierzbowski,et al.  Combination drugs, an emerging option for antibacterial therapy. , 2007, Trends in biotechnology.

[2]  Peter D. Karp,et al.  Multidimensional annotation of the Escherichia coli K-12 genome , 2007, Nucleic acids research.

[3]  J. Collins,et al.  A Common Mechanism of Cellular Death Induced by Bactericidal Antibiotics , 2007, Cell.

[4]  Boris Hayete,et al.  Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli , 2007 .

[5]  J. Collins,et al.  Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles , 2007, PLoS biology.

[6]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[7]  A. Monod,et al.  The DNA-binding domain of the Escherichia coli CpxR two-component response regulator is constitutively active and cannot be fully attenuated by fused adjacent heterologous regulatory domains. , 2006, Microbiology.

[8]  Julio Collado-Vides,et al.  RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions , 2005, Nucleic Acids Res..

[9]  Randy Schekman,et al.  Protein Translocation Across Biological Membranes , 2005, Science.

[10]  T. Raivio,et al.  Cpx Signal Transduction Is Influenced by a Conserved N-Terminal Domain in the Novel Inhibitor CpxP and the Periplasmic Protease DegP , 2005, Journal of bacteriology.

[11]  T. Silhavy,et al.  Sensing external stress: watchdogs of the Escherichia coli cell envelope. , 2005, Current opinion in microbiology.

[12]  David Botstein,et al.  GO: : TermFinder--open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes , 2004, Bioinform..

[13]  Irmgard Sinning,et al.  SRP-mediated protein targeting: structure and function revisited. , 2004, Biochimica et biophysica acta.

[14]  T. Silhavy,et al.  Quality control in the bacterial periplasm. , 2004, Biochimica et biophysica acta.

[15]  D. Georgellis,et al.  Identification of a quinone-sensitive redox switch in the ArcB sensor kinase. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Koreaki Ito,et al.  FtsH exists as an exceptionally large complex containing HflKC in the plasma membrane of Escherichia coli. , 2004, Journal of structural biology.

[17]  Xueqiao Liu,et al.  Probing the ArcA-P Modulon of Escherichia coli by Whole Genome Transcriptional Analysis and Sequence Recognition Profiling* , 2004, Journal of Biological Chemistry.

[18]  Emily Dimmer,et al.  The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology , 2004, Nucleic Acids Res..

[19]  John D. Storey,et al.  Statistical significance for genomewide studies , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[20]  J. Collins,et al.  Inferring Genetic Networks and Identifying Compound Mode of Action via Expression Profiling , 2003, Science.

[21]  S. Mobashery,et al.  Versatility of Aminoglycosides and Prospects for Their Future , 2003, Clinical Microbiology Reviews.

[22]  Jung-Hye Roe,et al.  A reducing system of the superoxide sensor SoxR in Escherichia coli , 2003, The EMBO journal.

[23]  Y. Urano,et al.  Development of Novel Fluorescence Probes That Can Reliably Detect Reactive Oxygen Species and Distinguish Specific Species* 210 , 2003, The Journal of Biological Chemistry.

[24]  Terence P. Speed,et al.  A comparison of normalization methods for high density oligonucleotide array data based on variance and bias , 2003, Bioinform..

[25]  Andrey V Kajava,et al.  Processing of Escherichia coli Alkaline Phosphatase , 2002, The Journal of Biological Chemistry.

[26]  J. Schacht,et al.  Recent Advances in Understanding Aminoglycoside Ototoxicity and Its Prevention , 2002, Audiology and Neurotology.

[27]  Koreaki Ito,et al.  The Sec protein-translocation pathway. , 2001, Trends in microbiology.

[28]  T. Silhavy,et al.  Genetic Basis for Activity Differences Between Vancomycin and Glycolipid Derivatives of Vancomycin , 2001, Science.

[29]  Robert A. LaRossa,et al.  DNA Microarray-Mediated Transcriptional Profiling of the Escherichia coli Response to Hydrogen Peroxide , 2001, Journal of bacteriology.

[30]  E. Lin,et al.  Quinones as the Redox Signal for the Arc Two-Component System of Bacteria , 2001, Science.

[31]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[32]  T. Nyström,et al.  Protein oxidation in response to increased transcriptional or translational errors. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[33]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[34]  J. Hoch,et al.  Two-component and phosphorelay signal transduction. , 2000, Current opinion in microbiology.

[35]  Daniel L. Popkin,et al.  The Cpx Envelope Stress Response Is Controlled by Amplification and Feedback Inhibition , 1999, Journal of bacteriology.

[36]  A. Economou Following the leader: bacterial protein export through the Sec pathway. , 1999, Trends in microbiology.

[37]  Koreaki Ito,et al.  Dislocation of membrane proteins in FtsH‐mediated proteolysis , 1999, The EMBO journal.

[38]  P. Tulkens,et al.  Aminoglycosides: Nephrotoxicity , 1999, Antimicrobial Agents and Chemotherapy.

[39]  T. Silhavy,et al.  Targeting and assembly of periplasmic and outer-membrane proteins in Escherichia coli. , 1998, Annual review of genetics.

[40]  Koreaki Ito,et al.  Roles of SecG in ATP- and SecA-dependent protein translocation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[41]  B. Demple,et al.  The redox‐regulated SoxR protein acts from a single DNA site as a repressor and an allosteric activator , 1998, The EMBO journal.

[42]  A. Kajava,et al.  Processing of Escherichia coli alkaline phosphatase: role of the primary structure of the signal peptide cleavage region. , 1998, Journal of molecular biology.

[43]  T. Silhavy,et al.  CpxP, a Stress-Combative Member of the Cpx Regulon , 1998, Journal of bacteriology.

[44]  R. Jepras,et al.  Rapid assessment of antibiotic effects on Escherichia coli by bis-(1,3-dibutylbarbituric acid) trimethine oxonol and flow cytometry , 1997, Antimicrobial agents and chemotherapy.

[45]  S. Mashiko,et al.  Participation of reactive oxygen species in phototoxicity induced by quinolone antibacterial agents. , 1997, Archives of biochemistry and biophysics.

[46]  A. Kihara,et al.  Host regulation of lysogenic decision in bacteriophage lambda: transmembrane modulation of FtsH (HflB), the cII degrading protease, by HflKC (HflA). , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[47]  J. Pogliano,et al.  Regulation of Escherichia coli cell envelope proteins involved in protein folding and degradation by the Cpx two-component system. , 1997, Genes & development.

[48]  H. Bujard,et al.  Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. , 1997, Nucleic acids research.

[49]  B. Weiss,et al.  Regulation of the soxRS Oxidative Stress Regulon , 1997, The Journal of Biological Chemistry.

[50]  Koreaki Ito,et al.  FtsH (HflB) Is an ATP-dependent Protease Selectively Acting on SecY and Some Other Membrane Proteins* , 1996, The Journal of Biological Chemistry.

[51]  Koreaki Ito,et al.  A protease complex in the Escherichia coli plasma membrane: HflKC (HflA) forms a complex with FtsH (HflB), regulating its proteolytic activity against SecY. , 1996, The EMBO journal.

[52]  D. Touati,et al.  Hypochlorous acid stress in Escherichia coli: resistance, DNA damage, and comparison with hydrogen peroxide stress , 1996, Journal of bacteriology.

[53]  S. Gottesman,et al.  Proteases and their targets in Escherichia coli. , 1996, Annual review of genetics.

[54]  T. Larson,et al.  Lipid biosynthetic genes and a ribosomal protein gene are cotranscribed , 1995, FEBS letters.

[55]  W. B. Snyder,et al.  The Cpx two-component signal transduction pathway of Escherichia coli regulates transcription of the gene specifying the stress-inducible periplasmic protease, DegP. , 1995, Genes & development.

[56]  D. Touati,et al.  Interaction of six global transcription regulators in expression of manganese superoxide dismutase in Escherichia coli K-12 , 1993, Journal of bacteriology.

[57]  H. Steinman,et al.  Functional differences between manganese and iron superoxide dismutases in Escherichia coli K-12. , 1992, The Journal of biological chemistry.

[58]  F. Hartl,et al.  The binding cascade of SecB to SecA to SecY E mediates preprotein targeting to the E. coli plasma membrane , 1990, Cell.

[59]  J. Beckwith,et al.  Characterization of degP, a gene required for proteolysis in the cell envelope and essential for growth of Escherichia coli at high temperature , 1989, Journal of bacteriology.

[60]  E. Lin,et al.  Differentiation of arcA, arcB, and cpxA mutant phenotypes of Escherichia coli by sex pilus formation and enzyme regulation , 1989, Journal of bacteriology.

[61]  P. Miller,et al.  Bacterial uptake of aminoglycoside antibiotics. , 1987, Microbiological reviews.

[62]  B. D. Davis Mechanism of bactericidal action of aminoglycosides , 1987, Microbiological reviews.

[63]  Frederick M. Ausubel,et al.  Conserved domains in bacterial regulatory proteins that respond to environmental stimuli , 1987, Cell.

[64]  K. Colina,et al.  Role of oxygen radicals in the phototoxicity of tetracyclines toward Escherichia coli B , 1987, Journal of bacteriology.

[65]  B. D. Davis,et al.  Misread protein creates membrane channels: an essential step in the bactericidal action of aminoglycosides. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[66]  T. Dougherty,et al.  Membrane permeability changes associated with DNA gyrase inhibitors in Escherichia coli , 1985, Antimicrobial Agents and Chemotherapy.

[67]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[68]  L. Bryan,et al.  Roles of ribosomal binding, membrane potential, and electron transport in bacterial uptake of streptomycin and gentamicin , 1983, Antimicrobial Agents and Chemotherapy.

[69]  J. Beckwith,et al.  Genetic analysis of protein export in Escherichia coli. , 1983, Methods in enzymology.

[70]  J. Beckwith,et al.  Regulation of a membrane component required for protein secretion in escherichia coli , 1982, Cell.

[71]  J. Rotschafer,et al.  Gentamicin pharmacokinetics in 1,640 patients: method for control of serum concentrations , 1982, Antimicrobial Agents and Chemotherapy.

[72]  R. Hancock Aminoglycoside uptake and mode of action-with special reference to streptomycin and gentamicin. II. Effects of aminoglycosides on cells. , 1981, The Journal of antimicrobial chemotherapy.

[73]  M. Kolot,et al.  Multiple forms of alkaline phosphatase from Escherichia coli cells with repressed and derepressed biosynthesis of the enzyme , 1981, Journal of bacteriology.

[74]  J. Rahal,et al.  Bactericidal and Bacteriostatic Action of Chloramphenicol Against Meningeal Pathogens , 1979, Antimicrobial Agents and Chemotherapy.

[75]  B. Weisblum,et al.  Antibiotic Inhibitors of the Bacterial Ribosome , 1968, Bacteriological reviews.