Fractional Mathieu equation

Abstract After reviewing the concept of fractional derivative, we derive expressions for the transition curves separating regions of stability from regions of instability in the ODE: x ″ + ( δ + ϵ cos t ) x + cD α x = 0 where D α x is the order α derivative of x ( t ) , where 0 α 1 . We use the method of harmonic balance and obtain both a lowest order approximation as well as a higher order approximation for the n = 1 transition curves. We also obtain an expression for the n = 0 transition curves.

[1]  Randolph S. Zounes,et al.  Transition Curves for the Quasi-Periodic Mathieu Equation , 1998, SIAM J. Appl. Math..

[2]  Junyi Cao,et al.  Nonlinear Dynamics of Duffing System With Fractional Order Damping , 2009 .

[3]  R. Bagley,et al.  On the Appearance of the Fractional Derivative in the Behavior of Real Materials , 1984 .

[4]  Milad Siami,et al.  More Details on Analysis of Fractional-order Van der Pol Oscillator , 2009 .

[5]  Ivo Petras,et al.  A note on the fractional-order Volta’s system , 2010 .

[6]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[7]  F. Mainardi Fractional Relaxation-Oscillation and Fractional Diffusion-Wave Phenomena , 1996 .

[8]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[9]  J. A. Tenreiro Machado,et al.  Analysis of the Van der Pol Oscillator Containing Derivatives of Fractional Order , 2007 .

[10]  F. Rüdinger,et al.  Tuned mass damper with fractional derivative damping , 2006 .

[11]  Zhang Xiu’e,et al.  Some comparison of two fractional oscillators , 2010 .

[12]  Julien Clinton Sprott,et al.  Chaos in fractional-order autonomous nonlinear systems , 2003 .

[13]  Pankaj Wahi,et al.  Averaging Oscillations with Small Fractional Damping and Delayed Terms , 2004 .

[14]  Richard H. Rand,et al.  Lecture Notes on Nonlinear Vibrations , 2012 .

[15]  Richard H. Rand,et al.  2:1 Resonance in the delayed nonlinear Mathieu equation , 2007 .

[16]  Linear Fractionally Damped Oscillator , 2009, 0908.1683.

[17]  Juhn-Horng Chen,et al.  Chaotic dynamics of the fractionally damped van der Pol equation , 2008 .

[18]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[19]  I. Podlubny Fractional differential equations , 1998 .

[20]  J. J. Stoker Nonlinear Vibrations in Mechanical and Electrical Systems , 1950 .

[21]  Feng Xie,et al.  Asymptotic solution of the van der Pol oscillator with small fractional damping , 2009 .

[22]  Dynamics of a nonlinear parametrically-excited PDE: 2-term truncation , 1996 .

[23]  R. Magin,et al.  Fractional calculus in viscoelasticity: An experimental study , 2010 .

[24]  Roger Ohayon,et al.  Finite element formulation of viscoelastic sandwich beams using fractional derivative operators , 2004 .

[25]  Zheng-Ming Ge,et al.  Chaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order systems , 2007 .

[26]  J. Machado,et al.  Implementation of fractional-order electromagnetic potential through a genetic algorithm , 2009 .

[27]  Alexander Puzenko,et al.  Damped oscillations in view of the fractional oscillator equation , 2002 .

[28]  Richard H. Rand,et al.  Slow Passage through Multiple Parametric Resonance Tongues , 2009 .