Good algorithm design style for multiprocessors

We discuss a style of designing parallel algorithms with the following characteristics for a problem of the best known sequential time T(n): C1. Each processor spends O(T(n)/P) time in computing. C2. Each processor sends and/or receives O(n/P) messages of one-word-size. C3. The number of communication phases/sup 1/ is constant, independent of the input size n. We show this is possible to achieve for several fundamental computational problems.<<ETX>>

[1]  Leslie G. Valiant,et al.  A Scheme for Fast Parallel Communication , 1982, SIAM J. Comput..

[2]  Manuel Blum,et al.  Time Bounds for Selection , 1973, J. Comput. Syst. Sci..

[3]  Leslie G. Valiant,et al.  A bridging model for parallel computation , 1990, CACM.

[4]  Mihalis Yannakakis,et al.  Towards an Architecture-Independent Analysis of Parallel Algorithms , 1990, SIAM J. Comput..

[5]  Kenneth L. Clarkson,et al.  A Las Vegas algorithm for linear programming when the dimension is small , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[6]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[7]  Russ Miller,et al.  Efficient Parallel Convex Hull Algorithms , 1988, IEEE Trans. Computers.

[8]  Xiaotie Deng,et al.  Competitive Implementation of Parallel Programs , 1993, SODA '93.

[9]  Andrew Rau-Chaplin,et al.  Scalable parallel geometric algorithms for coarse grained multicomputers , 1993, SCG '93.

[10]  Leonidas J. Guibas,et al.  Parallel computational geometry , 1988, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[11]  Christos H. Papadimitriou,et al.  A Communication-Time Tradeoff , 1987, SIAM J. Comput..

[12]  David G. Kirkpatrick,et al.  The Ultimate Planar Convex Hull Algorithm? , 1986, SIAM J. Comput..

[13]  Xiaotie Deng A Convex Hull Algorithm on Coarse-Grained Multiprocessors , 1994, ISAAC.

[14]  Michael T. Goodrich,et al.  Finding the Convex Hull of a Sorted Point Set in Parallel , 1987, Inf. Process. Lett..

[15]  Alok Aggarwal,et al.  On communication latency in PRAM computations , 1989, SPAA '89.

[16]  Mikhail J. Atallah,et al.  Efficient Parallel Solutions to Some Geometric Problems , 1986, J. Parallel Distributed Comput..

[17]  Nimrod Megiddo,et al.  Linear-time algorithms for linear programming in R3 and related problems , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[18]  Ramesh Subramonian,et al.  LogP: towards a realistic model of parallel computation , 1993, PPOPP '93.

[19]  John H. Reif,et al.  Polling: a new randomized sampling technique for computational geometry , 1989, STOC '89.

[20]  Richard J. Cole An Optimally Efficient Selection Algorithm , 1988, Inf. Process. Lett..