Superconvergence of discontinuous Galerkin solutions for a nonlinear scalar hyperbolic problem

In this paper we study the superconvergence of the discontinuous Galerkin solutions for nonlinear hyperbolic partial differential equations. On the first inflow element we prove that the p-degree discontinuous finite element solution converges at Radau points with an O(h p+2 ) rate. We further show that the solution flux converges on average at O(h 2p+2 )o n element outflow boundary when no reaction terms are present. For reaction–convection problems we establish an O(h min(2p+2,p+4) ) superconvergence rate of the flux on element outflow boundary. Globally, we prove that the flux converges at O(h 2p+1 ) on average at the outflow of smooth-solution regions for nonlinear conservation laws. Numerical computations indicate that our results extend to nonrectangular meshes and nonuniform polynomial degrees. We further include a numerical example which shows that discontinuous solutions are superconvergent to the unique entropy solution away from shock discontinuities. � 2005 Elsevier B.V. All rights reserved. MSC: 65M60; 65M25; 65M15

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  J. Tinsley Oden,et al.  A parallel hp -adaptive discontinuous Galerkin method for hyperbolic conservation laws , 1996 .

[3]  Joseph E. Flaherty,et al.  Error Estimation for Discontinuous Galerkin Solutions of Two-Dimensional Hyperbolic Problems , 2003, Adv. Comput. Math..

[4]  J. Oden,et al.  hp-Version discontinuous Galerkin methods for hyperbolic conservation laws , 1996 .

[5]  J. Tinsley Oden,et al.  hp-version discontinuous Galerkin methods for hyperbolic conservation laws: A parallel adaptive strategy , 1995 .

[6]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[7]  Karen Dragon Devine,et al.  Parallel adaptive hp -refinement techniques for conservation laws , 1996 .

[8]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems II: optimal error estimates in L ∞ L 2 and L ∞ L ∞ , 1995 .

[9]  Bernardo Cockburn,et al.  Error estimates for finite element methods for scalar conservation laws , 1996 .

[10]  Bernardo Cockburn,et al.  Discontinuous Galerkin Methods for Convection-Dominated Problems , 1999 .

[11]  Boleslaw K. Szymanski,et al.  Adaptive Local Refinement with Octree Load Balancing for the Parallel Solution of Three-Dimensional Conservation Laws , 1997, J. Parallel Distributed Comput..

[12]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[13]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[14]  J. Oden,et al.  A discontinuous hp finite element method for convection—diffusion problems , 1999 .

[15]  Slimane Adjerid,et al.  A posteriori discontinuous finite element error estimation for two-dimensional hyperbolic problems , 2002 .

[16]  J. Remacle,et al.  Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws , 2004 .

[17]  Karen Dragon Devine,et al.  A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems , 2002 .

[18]  Jérôme Jaffré,et al.  CONVERGENCE OF THE DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR HYPERBOLIC CONSERVATION LAWS , 1995 .

[19]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[20]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[21]  Slimane Adjerid,et al.  Superconvergence of Discontinuous Finite Element Solutions for Transient Convection–diffusion Problems , 2005, J. Sci. Comput..

[22]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[23]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .