Algorithm 805: computation and uses of the semidiscrete matrix decomposition
暂无分享,去创建一个
[1] Michael Harpham. December , 1855, The Hospital.
[2] K. Hirschhorn. Chromosome identification. , 1971, Canadian Medical Association journal.
[3] S. Zamir,et al. Lower Rank Approximation of Matrices by Least Squares With Any Choice of Weights , 1979 .
[4] Gene H. Golub,et al. Matrix computations , 1983 .
[5] Dianne P. O'Leary,et al. Digital Image Compression by Outer Product Expansion , 1983, IEEE Trans. Commun..
[6] Richard Barrett,et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.
[7] Tamara G. Kolda,et al. Limited-memory matrix methods with applications , 1997 .
[8] Tamara G. Kolda,et al. A semidiscrete matrix decomposition for latent semantic indexing information retrieval , 1998, TOIS.
[9] Tamara G. Kolda,et al. Latent Semantic Indexing Via a Semi-Discrete Matrix Decomposition , 1999 .
[10] T. Kolda. Orthogonal Rank Decompositions for Tensors , 1999 .
[11] D. O’Leary,et al. Computation and Uses of the Semidiscrete Matrix Decomposition , 1999 .
[12] John M Conroy,et al. Chromosome Identification Using Hidden Markov Models: Comparison with Neural Networks, Singular Value Decomposition, Principal Components Analysis, and Fisher Discriminant Analysis , 2000, Laboratory Investigation.