3-D Printed Metal-Pipe Rectangular Waveguides

This paper first reviews manufacturing technologies for realizing air-filled metal-pipe rectangular waveguides (MPRWGs) and 3-D printing for microwave and millimeter-wave applications. Then, 3-D printed MPRWGs are investigated in detail. Two very different 3-D printing technologies have been considered: low-cost lower-resolution fused deposition modeling for microwave applications and higher-cost high-resolution stereolithography for millimeter-wave applications. Measurements against traceable standards in MPRWGs were performed by the U.K.'s National Physical Laboratory. It was found that the performance of the 3-D printed MPRWGs were comparable with those of standard waveguides. For example, across X-band (8-12 GHz), the dissipative attenuation ranges between 0.2 and 0.6 dB/m, with a worst case return loss of 32 dB; at W-band (75-110 GHz), the dissipative attenuation was 11 dB/m at the band edges, with a worst case return loss of 19 dB. Finally, a high-performance W-band sixth-order inductive iris bandpass filter, having a center frequency of 107.2 GHz and a 6.8-GHz bandwidth, was demonstrated. The measured insertion loss of the complete structure (filter, feed sections, and flanges) was only 0.95 dB at center frequency, giving an unloaded quality factor of 152 - clearly demonstrating the potential of this low-cost manufacturing technology, offering the advantages of lightweight rapid prototyping/manufacturing and relatively very low cost when compared with traditional (micro)machining.

[1]  Ryan B. Wicker,et al.  3D printing of anisotropic metamaterials , 2012 .

[2]  David R. Smith,et al.  Thin low-loss dielectric coatings for free-space cloaking. , 2013, Optics letters.

[3]  William J. Chappell,et al.  Ceramic synthetic substrates using solid freeform fabrication , 2003 .

[4]  Y. Tai,et al.  Silicon micromachined waveguides for millimeter-wave and submillimeter-wave frequencies , 1993, IEEE Microwave and Guided Wave Letters.

[5]  Ajay Nahata,et al.  Terahertz plasmonic waveguides created via 3D printing. , 2013, Optics express.

[6]  K. Sarabandi,et al.  New fabrication technology for ceramic metamaterials , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[7]  Paul R. Young,et al.  Photoimageable thick-film millimetre-wave metal-pipe rectangular waveguides , 2001 .

[8]  Hao Xin,et al.  Terahertz electromagnetic crystal waveguide fabricated by polymer jetting rapid prototyping. , 2011, Optics express.

[9]  Benito Sanz-Izquierdo,et al.  3-D Printing of Elements in Frequency Selective Arrays , 2014, IEEE Transactions on Antennas and Propagation.

[10]  William G. Whittow,et al.  Applications and future prospects for microstrip antennas using heterogeneous and complex 3-D geometry substrates , 2014 .

[11]  V. Radisic,et al.  WR1.5 Silicon Micromachined Waveguide Components and Active Circuit Integration Methodology , 2012, IEEE Transactions on Microwave Theory and Techniques.

[12]  S. Lucyszyn,et al.  The future of on-chip terahertz metal-pipe rectangular waveguides implemented using micromachining and multilayer technologies , 1997 .

[13]  S. Lucyszyn,et al.  Modelling of Reconfigurable Terahertz Integrated Architecture (Retina) SIW Structures , 2010 .

[14]  Xun Gong,et al.  Layer-by-layer stereolithography of three-dimensional antennas , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[15]  Liwei Lin,et al.  A micromachined W-band iris filter , 2005, The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05..

[16]  G. F. Engen,et al.  Thru-Reflect-Line: An Improved Technique for Calibrating the Dual Six-Port Automatic Network Analyzer , 1979 .

[17]  A. Macor,et al.  Monolithic metal-coated plastic components for mm-wave applications , 2014, 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz).

[18]  Yi Wang,et al.  Micromachined H-plane horn antenna manufactured using thick SU-8 photoresist , 2010 .

[19]  Goutam Chattopadhyay,et al.  Measurement of Silicon Micromachined Waveguide Components at 500–750 GHz , 2014, IEEE Transactions on Terahertz Science and Technology.

[20]  M. Lancaster,et al.  Micromachined WR-3 waveguide filter with embedded bends , 2011 .

[21]  R Sauleau,et al.  Design and Characterization of 60-GHz Integrated Lens Antennas Fabricated Through Ceramic Stereolithography , 2010, IEEE Transactions on Antennas and Propagation.

[22]  K. Sarabandi,et al.  Design of 3-D Monolithic MMW Antennas Using Ceramic Stereolithography , 2007, IEEE Transactions on Antennas and Propagation.

[23]  H. Xin,et al.  Rapid and inexpensive fabrication of terahertz electromagnetic bandgap structures. , 2008, Optics express.

[25]  J. M. Chamberlain,et al.  Fabrication and characterization of micromachined rectangular waveguide components for use at millimeter-wave and terahertz frequencies , 2000 .

[26]  Glenn O. Mallory,et al.  Electroless plating : fundamentals and applications , 1990 .

[27]  D. W. van der Weide,et al.  Stereolithographed MM-wave corrugated horn antennas , 2011, 2011 International Conference on Infrared, Millimeter, and Terahertz Waves.

[28]  N. M. Ridler,et al.  A review of existing national measurement standards for RF and microwave impedance parameters in the UK. , 1999 .

[29]  D. Baillargeat,et al.  Ceramic Layer-By-Layer Stereolithography for the Manufacturing of 3-D Millimeter-Wave Filters , 2007, IEEE Transactions on Microwave Theory and Techniques.

[30]  N. S. Barker,et al.  SU-8 micromachining of millimeter and submillimeter waveguide circuits , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[31]  A. Rumiantsev,et al.  VNA calibration , 2008, IEEE Microwave Magazine.

[32]  E. de Rijk,et al.  Note: three-dimensional stereolithography for millimeter wave and terahertz applications. , 2012, The Review of scientific instruments.

[33]  D.P. Steenson,et al.  Integrated micro-machined antenna for 200 GHz operation , 1997, 1997 IEEE MTT-S International Microwave Symposium Digest.

[34]  N. Lisi,et al.  Terahertz waveguide components fabricated using a 3D X-ray microfabrication technique , 1996 .

[35]  R. D. Pollard,et al.  Micromachined waveguide antennas for 1.6 THz , 2006 .

[36]  W.J. Chappell,et al.  Applications of layer-by-layer polymer stereolithography for three-dimensional high-frequency components , 2004, IEEE Transactions on Microwave Theory and Techniques.

[37]  Yi Wang,et al.  WR-3 Band Waveguides and Filters Fabricated Using SU8 Photoresist Micromachining Technology , 2012, IEEE Transactions on Terahertz Science and Technology.

[38]  Xun Gong,et al.  Layer-by-layer polymer stereolithography fabrication for three-dimensional RF components , 2004, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535).

[39]  J. W. Allen,et al.  Design and fabrication of an RF GRIN lens using 3D printing technology , 2013, Photonics West - Optoelectronic Materials and Devices.

[40]  K. Sarabandi,et al.  Fabrication of a DRA Array Using Ceramic Stereolithography , 2006, IEEE Antennas and Wireless Propagation Letters.

[41]  A. Navarrini,et al.  Loss of WR 10 Waveguide across 70-116 GHz , 2013 .

[42]  Min Liang,et al.  A 3-D Luneburg Lens Antenna Fabricated by Polymer Jetting Rapid Prototyping , 2014, IEEE Transactions on Antennas and Propagation.

[43]  N Hopkinson,et al.  Analysis of rapid manufacturing—using layer manufacturing processes for production , 2003 .

[44]  Arnaud Pothier,et al.  Advanced RF MEMS: Impedance tuners and tuneable filters , 2010 .

[45]  William G. Whittow,et al.  Patch antennas with heterogeneous substrates and reduced material consumption enabled by additive manufacturing techniques , 2012 .

[46]  Integration of single-mode photonic crystal waveguides to monolithic MMW subsystems constructed using ceramic stereolithography , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[47]  S. Lucyszyn,et al.  Design of compact monolithic dielectric-filled metal-pipe rectangular waveguides for millimetre-wave applications , 1996 .

[48]  Dominique Baillargeat,et al.  Fabrication of Millimeter Wave Components Via Ceramic Stereo- and Microstereolithography Processes , 2008 .

[49]  N. Ridler NEWS IN RF IMPEDANCE MEASUREMENTS , 2002 .

[50]  A. Mortazawi,et al.  A compact millimeter-wave horn antenna array fabricated through layer-by-layer stereolithography , 2008, 2008 IEEE Antennas and Propagation Society International Symposium.

[51]  C. E. Collins,et al.  Micro-machined "snap-together" rectangular waveguide for terahertz circuits , 1998, 1998 IEEE Sixth International Conference on Terahertz Electronics Proceedings. THZ 98. (Cat. No.98EX171).

[52]  S. Delage,et al.  Narrow Ka Bandpass Filters Made Of High Permittivity Ceramic By Layer-By-Layer Polymer Stereolithography , 2006, 2006 European Microwave Conference.

[53]  Layer-by-layer stereolithography (SL) of complex medium , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[54]  Yang Hao,et al.  Rapid prototyping of ceramic millimeterwave metamaterials: Simulations and experiments , 2007 .

[55]  Atef Z. Elsherbeni,et al.  3D Printed Dielectric Reflectarrays: Low-Cost High-Gain Antennas at Sub-Millimeter Waves , 2014, IEEE Transactions on Antennas and Propagation.

[56]  Ian D. Robertson,et al.  0.1 THz rectangular waveguide on GaAs semi-insulating substrate , 1995 .

[57]  Liwei Lin,et al.  Plastic 95-GHz rectangular waveguides by micro molding technologies , 2006 .

[58]  S. Lucyszyn,et al.  On the theory of chained-function filters , 2005, IEEE Transactions on Microwave Theory and Techniques.

[59]  K. Sarabandi,et al.  Integration of Single-Mode Photonic Crystal Clad Waveguides With Monolithically Constructed Ceramic Subsystems , 2009, IEEE Antennas and Wireless Propagation Letters.

[60]  L. Katehi,et al.  High-Q evanescent-mode filters using silicon micromachining and polymer stereolithography (SL) processing , 2004, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535).

[61]  S. Lucyszyn,et al.  Rectangular waveguide enabling technology using holey surfaces and wire media metamaterials , 2014 .

[62]  Xiaobang Shang,et al.  A SU8 Micromachined WR-1.5 Band Waveguide Filter , 2013, IEEE Microwave and Wireless Components Letters.