Estimation of Large Dynamic Covariance Matrices: A Selective Review

Abstract A personal review of some recent developments on estimating large dynamic covariance matrices whose entries are allowed to change over time is provided. The underlying covariance matrices are assumed to satisfy structural assumptions such as GARCH, approximate sparsity and conditional sparsity. Initially the review considers extensions of the classic GARCH model to multivariate and high-dimensional time series settings, and then focuses on some data-driven non- and semi-parametric models and estimation approaches for large covariance matrices which evolve smoothly over time or with some conditioning variables. Detection of multiple structural breaks in large covariance structures is also reviewed. Finally some relevant future directions are discussed.

[1]  M. Rothschild,et al.  Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets , 1982 .

[2]  Chenlei Leng,et al.  Spectral analysis of high-dimensional time series , 2018, Electronic Journal of Statistics.

[3]  Dick van Dijk,et al.  Closed-Form Multi-Factor Copula Models With Observation-Driven Dynamic Factor Loadings , 2020 .

[4]  Ruoxuan Xiong,et al.  State-Varying Factor Models of Large Dimensions , 2018, Journal of Business & Economic Statistics.

[5]  J. Bai,et al.  Determining the Number of Factors in Approximate Factor Models , 2000 .

[6]  R. Engle Dynamic Conditional Correlation , 2002 .

[7]  E. Fama,et al.  The Cross‐Section of Expected Stock Returns , 1992 .

[8]  H. P. Boswijk,et al.  Estimating spot volatility with high-frequency financial data , 2014 .

[9]  T. W. Anderson An Introduction to Multivariate Statistical Analysis , 1959 .

[10]  Liang Peng,et al.  Conditional variance estimation in heteroscedastic regression models , 2009 .

[11]  O. Linton,et al.  A flexible semiparametric forecasting model for time series , 2015 .

[12]  Shuzhong Shi,et al.  Estimating High Dimensional Covariance Matrices and its Applications , 2011 .

[13]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[14]  R. Kawka Convergence of spectral density estimators in the locally stationary framework , 2020 .

[15]  O. Linton,et al.  Semiparametric Dynamic Portfolio Choice with Multiple Conditioning Variables , 2015 .

[16]  Timo Terasvirta,et al.  Multivariate GARCH Models , 2008 .

[17]  Dong Hwan Oh,et al.  Modeling Dependence in High Dimensions With Factor Copulas , 2015 .

[18]  Weidong Liu,et al.  Adaptive Thresholding for Sparse Covariance Matrix Estimation , 2011, 1102.2237.

[19]  Hongzhe Li,et al.  Covariate-Adjusted Precision Matrix Estimation with an Application in Genetical Genomics. , 2013, Biometrika.

[20]  Olivier Ledoit,et al.  Nonlinear Shrinkage Estimation of Large-Dimensional Covariance Matrices , 2011, 1207.5322.

[21]  T. Bollerslev,et al.  ANSWERING THE SKEPTICS: YES, STANDARD VOLATILITY MODELS DO PROVIDE ACCURATE FORECASTS* , 1998 .

[22]  Adam J. Rothman,et al.  Generalized Thresholding of Large Covariance Matrices , 2009 .

[23]  H. Zou,et al.  Regularized rank-based estimation of high-dimensional nonparanormal graphical models , 2012, 1302.3082.

[24]  A. Aue,et al.  Break detection in the covariance structure of multivariate time series models , 2009, 0911.3796.

[25]  O. Linton,et al.  Semiparametric Ultra-High Dimensional Model Averaging of Nonlinear Dynamic Time Series , 2015 .

[26]  Piotr Fryzlewicz,et al.  Multiple‐change‐point detection for high dimensional time series via sparsified binary segmentation , 2015, 1611.08639.

[27]  J. Wooldridge,et al.  A Capital Asset Pricing Model with Time-Varying Covariances , 1988, Journal of Political Economy.

[28]  R. Dahlhaus Fitting time series models to nonstationary processes , 1997 .

[29]  Dennis Kristensen,et al.  ESTIMATION OF STOCHASTIC VOLATILITY MODELS BY NONPARAMETRIC FILTERING , 2010, Econometric Theory.

[30]  Chenlei Leng,et al.  Dynamic Covariance Models , 2016 .

[31]  Harrison H. Zhou,et al.  OPTIMAL SPARSE VOLATILITY MATRIX ESTIMATION FOR HIGH-DIMENSIONAL ITÔ PROCESSES WITH MEASUREMENT ERRORS , 2013, 1309.4889.

[32]  Larry A. Wasserman,et al.  High Dimensional Semiparametric Gaussian Copula Graphical Models. , 2012, ICML 2012.

[33]  M. C. Jones,et al.  Likelihood-Based Local Linear Estimation of the Conditional Variance Function , 2004 .

[34]  Gary Chamberlain,et al.  FUNDS, FACTORS, AND DIVERSIFICATION IN ARBITRAGE PRICING MODELS , 1983 .

[35]  Jianqing Fan,et al.  High-Frequency Covariance Estimates With Noisy and Asynchronous Financial Data , 2010 .

[36]  M. Pourahmadi,et al.  Bayesian analysis of covariance matrices and dynamic models for longitudinal data , 2002 .

[37]  Jianqing Fan,et al.  Sparsistency and Rates of Convergence in Large Covariance Matrix Estimation. , 2007, Annals of statistics.

[38]  N. Shephard,et al.  Econometric analysis of realized volatility and its use in estimating stochastic volatility models , 2002 .

[39]  R. Engle,et al.  Multivariate Simultaneous Generalized ARCH , 1995, Econometric Theory.

[40]  Jianqing Fan,et al.  Efficient Estimation of Conditional Variance Functions in Stochastic Regression , 1998 .

[41]  Carlos M. Carvalho,et al.  FLEXIBLE COVARIANCE ESTIMATION IN GRAPHICAL GAUSSIAN MODELS , 2008, 0901.3267.

[42]  Kun Lu,et al.  Knowing Factors or Factor Loadings, or Neither? Evaluating Estimators of Large Covariance Matrices with Noisy and Asynchronous Data , 2017, Journal of Econometrics.

[43]  A. Bose,et al.  Large Covariance and Autocovariance Matrices , 2018 .

[44]  Alessandro Rinaldo,et al.  Optimal covariance change point localization in high dimensions , 2017, Bernoulli.

[45]  L. Bauwens,et al.  Multivariate GARCH Models: A Survey , 2003 .

[46]  Jianqing Fan,et al.  An Overview of the Estimation of Large Covariance and Precision Matrices , 2015, The Econometrics Journal.

[47]  Ming Yuan,et al.  High Dimensional Inverse Covariance Matrix Estimation via Linear Programming , 2010, J. Mach. Learn. Res..

[48]  Sumanta Basu,et al.  Large Spectral Density Matrix Estimation by Thresholding , 2018, 1812.00532.

[49]  Atsushi Inoue,et al.  TESTS FOR PARAMETER INSTABILITY IN DYNAMIC FACTOR MODELS , 2014, Econometric Theory.

[50]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[51]  Mark W. Watson,et al.  Forecasting in dynamic factor models subject to structural instability , 2009 .

[52]  Larry A. Wasserman,et al.  The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs , 2009, J. Mach. Learn. Res..

[53]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[54]  Jean Jacod,et al.  Microstructure Noise in the Continuous Case: The Pre-Averaging Approach - JLMPV-9 , 2007 .

[55]  Jörg Breitung,et al.  Testing for Structural Breaks in Dynamic Factor Models , 2011, SSRN Electronic Journal.

[56]  Roy van der Weide,et al.  GO-GARCH: a multivariate generalized orthogonal GARCH model , 2002 .

[57]  R. Dahlhaus Local inference for locally stationary time series based on the empirical spectral measure , 2009 .

[58]  Jesus Gonzalo,et al.  Detecting big structural breaks in large factor models , 2014 .

[59]  Mark Podolskij,et al.  Pre-Averaging Estimators of the Ex-Post Covariance Matrix in Noisy Diffusion Models with Non-Synchronous Data , 2010 .

[60]  Clifford Lam,et al.  Factor modeling for high-dimensional time series: inference for the number of factors , 2012, 1206.0613.

[61]  Dennis Kristensen NONPARAMETRIC FILTERING OF THE REALIZED SPOT VOLATILITY: A KERNEL-BASED APPROACH , 2009, Econometric Theory.

[62]  O. Linton,et al.  A New Semiparametric Estimation Approach of Large Dynamic Covariance Matrices with Multiple Conditioning Variables , 2018, Journal of Econometrics.

[63]  W. Wu,et al.  Covariance and precision matrix estimation for high-dimensional time series , 2013, 1401.0993.

[64]  J. Berger,et al.  Estimation of a Covariance Matrix Using the Reference Prior , 1994 .

[65]  P. Bickel,et al.  Covariance regularization by thresholding , 2009, 0901.3079.

[66]  ASYMPTOTIC THEORY FOR A FACTOR GARCH MODEL , 2009, Econometric Theory.

[67]  Jianqing Fan,et al.  LARGE COVARIANCE ESTIMATION THROUGH ELLIPTICAL FACTOR MODELS. , 2015, Annals of statistics.

[68]  Haeran Cho,et al.  Change-point detection in panel data via double CUSUM statistic , 2016, 1611.08631.

[69]  Shujie Ma,et al.  Estimation of large dimensional factor models with an unknown number of breaks , 2018, Journal of Econometrics.

[70]  Dacheng Xiu,et al.  Using Principal Component Analysis to Estimate a High Dimensional Factor Model with High-Frequency Data , 2016 .

[71]  Yazhen Wang,et al.  VAST VOLATILITY MATRIX ESTIMATION FOR HIGH-FREQUENCY FINANCIAL DATA , 2010, 1002.4754.

[72]  Jianqing Fan,et al.  High Dimensional Covariance Matrix Estimation in Approximate Factor Models , 2011, Annals of statistics.

[73]  Dong Hwan Oh,et al.  Dynamic Factor Copula Models with Estimated Cluster Assignments , 2020, Finance and Economics Discussion Series.

[74]  Yang Feng,et al.  Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification , 2013, Journal of the American Statistical Association.

[75]  Robert F. Engle,et al.  Fitting Vast Dimensional Time-Varying Covariance Models , 2017, Journal of Business & Economic Statistics.

[76]  P. Bickel,et al.  Regularized estimation of large covariance matrices , 2008, 0803.1909.

[77]  C. Morana Regularized Semiparametric Estimation of High Dimensional Dynamic Conditional Covariance Matrices , 2019, Econometrics and Statistics.

[78]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[79]  Tengyao Wang,et al.  High dimensional change point estimation via sparse projection , 2016, 1606.06246.

[80]  M. Rothschild,et al.  Asset Pricing with a Factor Arch Covariance Structure: Empirical Estimates for Treasury Bills , 1988 .

[81]  Hanchao Wang,et al.  Nonparametric estimation of large covariance matrices with conditional sparsity , 2021, Journal of Econometrics.

[82]  Ruey S. Tsay,et al.  High Dimensional Dynamic Stochastic Copula Models , 2014 .

[83]  Xiaohong Chen Chapter 76 Large Sample Sieve Estimation of Semi-Nonparametric Models , 2007 .

[84]  Harrison H. Zhou,et al.  Estimating structured high-dimensional covariance and precision matrices: Optimal rates and adaptive estimation , 2016 .

[85]  Liangjun Su,et al.  On Time-Varying Factor Models: Estimation and Testing ∗ , 2017 .

[86]  Frank Schorfheide,et al.  Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities , 2013 .

[87]  Christian M. Hafner,et al.  LOCALLY STATIONARY FACTOR MODELS: IDENTIFICATION AND NONPARAMETRIC ESTIMATION , 2011, Econometric Theory.

[88]  Eric Hillebrand,et al.  Consistent estimation of time-varying loadings in high-dimensional factor models , 2019, Journal of Econometrics.

[89]  Chenlei Leng,et al.  Sparse Matrix Graphical Models , 2012 .

[90]  M. Jirak Uniform change point tests in high dimension , 2015, 1511.05333.

[91]  Michael Wolf,et al.  Spectrum Estimation: A Unified Framework for Covariance Matrix Estimation and PCA in Large Dimensions , 2013, J. Multivar. Anal..

[92]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[93]  Harrison H. Zhou,et al.  OPTIMAL RATES OF CONVERGENCE FOR SPARSE COVARIANCE MATRIX ESTIMATION , 2012, 1302.3030.

[94]  Ioannis D. Vrontos,et al.  A Full-Factor Multivariate GARCH Model , 2003 .

[95]  H. Dette,et al.  Detection of Multiple Structural Breaks in Multivariate Time Series , 2013, 1309.1309.

[96]  Jianqing Fan,et al.  Large covariance estimation by thresholding principal orthogonal complements , 2011, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[97]  Seung C. Ahn,et al.  Eigenvalue Ratio Test for the Number of Factors , 2013 .

[98]  Piotr Fryzlewicz,et al.  Simultaneous multiple change-point and factor analysis for high-dimensional time series , 2016, Journal of Econometrics.

[99]  T. Bollerslev,et al.  Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model , 1990 .

[100]  Piotr Fryzlewicz,et al.  Wild binary segmentation for multiple change-point detection , 2014, 1411.0858.

[101]  Robert F. Engle,et al.  Large Dynamic Covariance Matrices , 2017 .

[102]  T. Cai,et al.  A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation , 2011, 1102.2233.

[103]  J. Aston,et al.  High dimensional efficiency with applications to change point tests , 2018 .

[104]  John Box,et al.  A Dynamic Structure for High-Dimensional Covariance Matrices and Its Application in Portfolio Allocation , 2015, 1506.01407.

[105]  H. Zou,et al.  Optimal estimation of sparse correlation matrices of semiparametric Gaussian copulas , 2014 .

[106]  Badi H. Baltagi,et al.  Identification and estimation of a large factor model with structural instability , 2017 .