Optical vortex symmetry breakdown and decomposition of the orbital angular momentum of light beams.

Two forms of the transverse energy circulation within plane-polarized paraxial light beams are specified: one inherent in wave-front singularities (optical vortices) and the other peculiar to astigmatism and asymmetry of beams with a smooth wave front. As quantitative measures of these energy flow components, the concepts of vortex and asymmetry parts of a beam's orbital angular momentum are introduced and their definitions are proposed on the basis of beam intensity moments. The properties and physical meaning of these concepts are analyzed, and their use for the study of transformations of optical vortices is demonstrated.

[1]  Gabriel Molina-Terriza,et al.  Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. , 2002, Physical review letters.

[2]  L. Torner,et al.  Propagation and control of noncanonical optical vortices. , 2001, Optics letters.

[3]  Mikhail V. Vasnetsov,et al.  Optical wavefront dislocations , 1995, Correlation Optics.

[4]  Miles J. Padgett,et al.  IV The Orbital Angular Momentum of Light , 1999 .

[5]  S. Barnett,et al.  Measuring the orbital angular momentum of a single photon. , 2002, Physical review letters.

[6]  M J Padgett,et al.  Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. , 2002, Physical review letters.

[7]  Andriy Yurievich Popov,et al.  Measurement of the orbital angular momentum of an optical beam with the help of space-angle intensity moments , 2002, International Conference on Correlation Optics.

[8]  Norman R. Heckenberg,et al.  Topological charge and angular momentum of light beams carrying optical vortices , 1997 .

[9]  Aleksandr Bekshaev,et al.  Optical system for Laguerre-Gaussian/Hermite-Gaussian mode conversion , 2001, Other Conferences.

[10]  H. Rubinsztein-Dunlop,et al.  Optical angular-momentum transfer to trapped absorbing particles. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[11]  J. P. Woerdman,et al.  Astigmatic laser mode converters and transfer of orbital angular momentum , 1993 .

[12]  Y. Anan'ev,et al.  THEORY OF INTENSITY MOMENTS FOR ARBITRARY LIGHT BEAMS , 1994 .

[13]  Vladimir G. Volostnikov,et al.  Light beams with phase singularities: some aspects of analysis and synthesis , 2001, Other Conferences.

[14]  Mikhail V. Vasnetsov,et al.  Optics of light beams with screw dislocations , 1993 .

[15]  Isaac Freund,et al.  Optical dislocation networks in highly random media , 1993 .

[16]  Guy Indebetouw,et al.  Optical Vortices and Their Propagation , 1993 .

[17]  Mikhail V. Vasnetsov,et al.  Transformation of the orbital angular momentum of a beam with optical vortex in an astigmatic optical system , 2002 .

[18]  Mj Martin Bastiaans Wigner distribution function and its application to first-order optics , 1979 .

[19]  Nikolai S. Kazak,et al.  LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Generation of Bessel light beams under the conditions of internal conical refraction , 1999 .

[20]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[21]  M. S. Soskin,et al.  Chapter 4 - Singular optics , 2001 .

[22]  Kishan Dholakia,et al.  Atom guiding along Laguerre-Gaussian and Bessel light beams , 2000 .

[23]  Miles J. Padgett,et al.  The Poynting vector in Laguerre-Gaussian laser modes , 1995 .