Recent Progress of Plasma-Assisted Nitrogen Fixation Research: A Review

Nitrogen is an essential element to plants, animals, human beings and all the other living things on earth. Nitrogen fixation, which converts inert atmospheric nitrogen into ammonia or other valuable substances, is a very important part of the nitrogen cycle. The Haber-Bosch process plays the dominant role in the chemical nitrogen fixation as it produces a large amount of ammonia to meet the demand from the agriculture and chemical industries. However, due to the high energy consumption and related environmental concerns, increasing attention is being given to alternative (greener) nitrogen fixation processes. Among different approaches, plasma-assisted nitrogen fixation is one of the most promising methods since it has many advantages over others. These include operating at mild operation conditions, a green environmental profile and suitability for decentralized production. This review covers the research progress in the field of plasma-assisted nitrogen fixation achieved in the past five years. Both the production of NOx and the synthesis of ammonia are included, and discussion on plasma reactors, operation parameters and plasma-catalysts are given. In addition, outlooks and suggestions for future research are also given.

[1]  X. Tu,et al.  Highly efficient conversion of methane using microsecond and nanosecond pulsed spark discharges , 2018, Applied Energy.

[2]  Dezhen Wang,et al.  A mechanistic study on partial oxidation of methane to methanol with hydrogen peroxide vapor in atmospheric dielectric barrier discharge , 2018, Japanese Journal of Applied Physics.

[3]  Wenwei Wu,et al.  Reforming of CH4 and CO2 by Combination of Alternating Current-Driven Nonthermal Arc Plasma and Catalyst , 2018, IEEE Transactions on Plasma Science.

[4]  G. Stefanidis,et al.  Direct methane-to-ethylene conversion in a nanosecond pulsed discharge , 2018, Fuel.

[5]  E. Genty,et al.  Dry reforming of methane via plasma-catalysis: influence of the catalyst nature supported on alumina in a packed-bed DBD configuration , 2018 .

[6]  F. Tabares,et al.  Role of nitrogen inventory and ion enhanced N-H recombination in the ammonia formation on tungsten walls. A DC glow discharge study , 2018 .

[7]  Chunfei Wu,et al.  Low temperature reforming of biogas over K-, Mg- and Ce-promoted Ni/Al2O3 catalysts for the production of hydrogen rich syngas: Understanding the plasma-catalytic synergy , 2018 .

[8]  Paul Chen,et al.  In situ plasma-assisted atmospheric nitrogen fixation using water and spray-type jet plasma. , 2018, Chemical communications.

[9]  Paul Chen,et al.  A review on the non-thermal plasma-assisted ammonia synthesis technologies , 2018 .

[10]  Y. Teramoto,et al.  Indirect Synthesis System for Ammonia from Nitrogen and Water Using Nonthermal Plasma Under Ambient Conditions , 2018, Plasma Chemistry and Plasma Processing.

[11]  Honghong Yi,et al.  Nitrogen Fixation and NO Conversion using Dielectric Barrier Discharge Reactor: Identification and Evolution of Products , 2018, Plasma Chemistry and Plasma Processing.

[12]  Masayukiu Morimoto,et al.  Excitation of H2O at the plasma/water interface by UV irradiation for the elevation of ammonia production , 2018 .

[13]  Bs Bhaskar Patil,et al.  Plasma assisted nitrogen oxide production from air : using pulsed powered gliding arc reactor for a containerized plant , 2018 .

[14]  Honghong Yi,et al.  N2O Formation Characteristics in Dielectric Barrier Discharge Reactor for Environmental Application: Effect of Operating Parameters , 2017 .

[15]  Seong Bong Kim,et al.  Effects of gas temperature in the plasma layer on RONS generation in array-type dielectric barrier discharge at atmospheric pressure , 2017 .

[16]  Y. Uytdenhouwen,et al.  CO2 dissociation in a packed bed DBD reactor: First steps towards a better understanding of plasma catalysis , 2017 .

[17]  T. Deguchi,et al.  Ammonia Synthesis on Wool-Like Au, Pt, Pd, Ag, or Cu Electrode Catalysts in Nonthermal Atmospheric-Pressure Plasma of N2 and H2 , 2017 .

[18]  M. Bak,et al.  Formation of nitrogen oxides from atmospheric electrodeless microwave plasmas in nitrogen–oxygen mixtures , 2017 .

[19]  F. Tabares,et al.  Influence of residence time and helium addition in the ammonia formation on tungsten walls in N2H2 glow discharge plasmas , 2017 .

[20]  Paul Chen,et al.  Ru-based multifunctional mesoporous catalyst for low-pressure and non-thermal plasma synthesis of ammonia , 2017 .

[21]  A. Bogaerts,et al.  How bead size and dielectric constant affect the plasma behaviour in a packed bed plasma reactor: a modelling study , 2017 .

[22]  S. Pekárek Experimental Study of Nitrogen Oxides and Ozone Generation by Corona-Like Dielectric Barrier Discharge with Airflow in a Magnetic Field , 2017, Plasma Chemistry and Plasma Processing.

[23]  Peter H. Pfromm,et al.  Towards sustainable agriculture: Fossil-free ammonia , 2017 .

[24]  R. M. Lambert,et al.  About the enhancement of chemical yield during the atmospheric plasma synthesis of ammonia in a ferroelectric packed bed reactor , 2017 .

[25]  T. Nanba,et al.  Atmospheric‐pressure nonthermal plasma synthesis of ammonia over ruthenium catalysts , 2017 .

[26]  V. Hessel,et al.  Nitrogen Fixation by Gliding Arc Plasma: Better Insight by Chemical Kinetics Modelling. , 2017, ChemSusChem.

[27]  X. Tu,et al.  Conversion of CO2 in a cylindrical dielectric barrier discharge reactor: Effects of plasma processing parameters and reactor design , 2017 .

[28]  Ronny Brandenburg,et al.  Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments , 2017 .

[29]  X. Tu,et al.  Non-thermal plasma technology for the conversion of CO2 , 2017 .

[30]  Kui Zhang,et al.  Process Intensification in Ammonia Synthesis Using Novel Coassembled Supported Microporous Catalysts Promoted by Nonthermal Plasma , 2017 .

[31]  Bs Bhaskar Patil,et al.  Techno-Economic Feasibility Study of Renewable Power Systems for a Small-Scale Plasma-Assisted Nitric Acid Plant in Africa , 2016 .

[32]  G. Raykhtsaum,et al.  Detection and removal of impurities in nitric oxide generated from air by pulsed electrical discharge. , 2016, Nitric oxide : biology and chemistry.

[33]  T. Deguchi,et al.  Remarkable catalysis of a wool-like copper electrode for NH3 synthesis from N2 and H2 in non-thermal atmospheric plasma. , 2016, Chemical communications.

[34]  R. Brandenburg,et al.  Cross-correlation spectroscopy study of the transient spark discharge in atmospheric pressure air , 2016 .

[35]  Xing Fan,et al.  Ammonia synthesis and by-product formation from H2O, H2 and N2 by dielectric barrier discharge combined with an Ru/Al2O3 catalyst , 2016 .

[36]  Bs Bhaskar Patil,et al.  Low temperature plasma-catalytic NOx synthesis in a packed DBD reactor: Effect of support materials and supported active metal oxides , 2016 .

[37]  M. Janda,et al.  Study of transient spark discharge focused at NOx generation for biomedical applications , 2016 .

[38]  T. Kamachi,et al.  Non-catalyzed one-step synthesis of ammonia from atmospheric air and water , 2016 .

[39]  V. Hessel,et al.  Life Cycle Assessment of the Nitrogen Fixation Process Assisted by Plasma Technology and Incorporating Renewable Energy , 2016 .

[40]  P. Chirik,et al.  Expanding Boundaries: N2 Cleavage and Functionalization beyond Early Transition Metals. , 2016, Angewandte Chemie.

[41]  S. Macgregor,et al.  Production characteristics of reactive oxygen/nitrogen species in water using atmospheric pressure discharge plasmas , 2016 .

[42]  Paul Chen,et al.  Atmospheric Pressure Ammonia Synthesis Using Non-thermal Plasma Assisted Catalysis , 2016, Plasma Chemistry and Plasma Processing.

[43]  R. Allen,et al.  Effects of particle size on CO2 reduction and discharge characteristics in a packed bed plasma reactor , 2016 .

[44]  C. Charles,et al.  Plasma Catalytic Synthesis of Ammonia Using Functionalized-Carbon Coatings in an Atmospheric-Pressure Non-equilibrium Discharge , 2016, Plasma Chemistry and Plasma Processing.

[45]  M. Malik Nitric Oxide Production by High Voltage Electrical Discharges for Medical Uses: A Review , 2016, Plasma Chemistry and Plasma Processing.

[46]  M. Janda,et al.  Generation of Antimicrobial NOx by Atmospheric Air Transient Spark Discharge , 2016, Plasma Chemistry and Plasma Processing.

[47]  K. Ostrikov,et al.  Plasma Catalysis: Synergistic Effects at the Nanoscale. , 2015, Chemical reviews.

[48]  R. M. Lambert,et al.  Efficient synthesis of ammonia from N2 and H2 alone in a ferroelectric packed-bed DBD reactor , 2015 .

[49]  Bs Bhaskar Patil,et al.  Plasma N2-fixation : 1900-2014 , 2015 .

[50]  Hana Souskova,et al.  Nonthermal plasma--A tool for decontamination and disinfection. , 2015, Biotechnology advances.

[51]  A. Bogaerts,et al.  Improving the Conversion and Energy Efficiency of Carbon Dioxide Splitting in a Zirconia-Packed Dielectric Barrier Discharge Reactor , 2015 .

[52]  E. Choi,et al.  Assessment of the Effects of Nitrogen Plasma and Plasma‐Generated Nitric Oxide on Early Development of Coriandum sativum , 2015 .

[53]  Yan Lu,et al.  CH4 emissions and reduction potential in wastewater treatment in China , 2015 .

[54]  F. Tabares,et al.  Ammonia formation in N 2 /H 2 plasmas on ITER-relevant plasma facing materials: Surface temperature and N 2 plasma content effects , 2015 .

[55]  E. Choi,et al.  Production of nitric oxide using a microwave plasma torch and its application to fungal cell differentiation , 2015 .

[56]  N. Cherkasov,et al.  A review of the existing and alternative methods for greener nitrogen fixation , 2015 .

[57]  Baowei Wang,et al.  Effect of dielectric packing materials on the decomposition of carbon dioxide using DBD microplasma reactor , 2015 .

[58]  C. Suschek,et al.  The topical use of non-thermal dielectric barrier discharge (DBD): nitric oxide related effects on human skin. , 2015, Nitric oxide : biology and chemistry.

[59]  S. Hatanaka,et al.  Nitrogen Fixation in an Aqueous Solution by a Novel Flow Plasma System , 2015 .

[60]  D. Graves,et al.  Air spark-like plasma source for antimicrobial NOx generation , 2014 .

[61]  J. Kolb,et al.  Nitric Oxide Generation with an Air Operated Non‐Thermal Plasma Jet and Associated Microbial Inactivation Mechanisms , 2014 .

[62]  A Aikaterini Anastasopoulou,et al.  Energy considerations for plasma-assisted N-fixation reactions , 2014 .

[63]  M. Janda,et al.  Measurement of the electron density in Transient Spark discharge , 2014 .

[64]  S. Prawer,et al.  Production of Ammonia by Heterogeneous Catalysis in a Packed-Bed Dielectric-Barrier Discharge: Influence of Argon Addition and Voltage , 2014, IEEE Transactions on Plasma Science.

[65]  P. Bruggeman,et al.  Numerical analysis of the NO and O generation mechanism in a needle-type plasma jet , 2014 .

[66]  J. Whitehead,et al.  Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: Co-generation of syngas and carbon nanomaterials , 2014 .

[67]  Anne Mai-Prochnow,et al.  Atmospheric pressure plasmas: infection control and bacterial responses. , 2014, International journal of antimicrobial agents.

[68]  J. Prager,et al.  A high voltage nanosecond pulser with variable pulse width and pulse repetition frequency control for nonequilibrium plasma applications , 2014, 2014 IEEE 41st International Conference on Plasma Sciences (ICOPS) held with 2014 IEEE International Conference on High-Power Particle Beams (BEAMS).

[69]  G. Collet,et al.  Plasma jet-induced tissue oxygenation: potentialities for new therapeutic strategies , 2014 .

[70]  A. Suzuki,et al.  Stable Molecules in N2–H2 Plasmas Measured Using a Quartz Sensor , 2013 .

[71]  Y. Nishibayashi,et al.  Developing more sustainable processes for ammonia synthesis , 2013 .

[72]  Allison M. Leach,et al.  The global nitrogen cycle in the twenty-first century , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[73]  N. Popov Dissociation of nitrogen in a pulse-periodic dielectric barrier discharge at atmospheric pressure , 2013 .

[74]  Kevin Davis,et al.  Reactive nitrogen species produced in water by non-equilibrium plasma increase plant growth rate and nutritional yield , 2013 .

[75]  A. Mizuno,et al.  Dielectric Barrier Discharge for Ammonia Production , 2013, Plasma Chemistry and Plasma Processing.

[76]  H. Hosono,et al.  Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. , 2012, Nature chemistry.

[77]  A. Fridman,et al.  Reactive Oxygen and Nitrogen Species Production and Delivery Into Liquid Media by Microsecond Thermal Spark-Discharge Plasma Jet , 2012, IEEE Transactions on Plasma Science.

[78]  David B. Graves,et al.  The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology , 2012 .

[79]  Petr Lukes,et al.  Plasma chemistry and catalysis in gases and liquids , 2012 .

[80]  S. Chavadej,et al.  Synthesis Gas Production from CO2-Containing Natural Gas by Combined Steam Reforming and Partial Oxidation in an AC Gliding Arc Discharge , 2012, Plasma Chemistry and Plasma Processing.

[81]  K. Weltmann,et al.  Controlling the NO production of an atmospheric pressure plasma jet , 2012 .

[82]  Xiaoming Zheng,et al.  Characteristics of the Decomposition of CO2 in a Dielectric Packed-Bed Plasma Reactor , 2012, Plasma Chemistry and Plasma Processing.

[83]  J. Whitehead,et al.  Electrical and spectroscopic diagnostics of a single-stage plasma-catalysis system: effect of packing with TiO2 , 2011 .

[84]  M. Appl Ammonia, 2. Production Processes , 2011 .

[85]  A. Gutsol,et al.  Dissociation of CO2 in a low current gliding arc plasmatron , 2011 .

[86]  Xiaoyan Dai,et al.  CH4–CO2 reforming by plasma – challenges and opportunities , 2011 .

[87]  Š. Matejčík,et al.  Packed Bed DBD Discharge Experiments in Admixtures of N2 and CH4 , 2010 .

[88]  D. Kane,et al.  Enhanced performance of an EUV light source (λ = 84 nm) using short-pulse excitation of a windowless dielectric barrier discharge in neon , 2010 .

[89]  Y. Fujioka,et al.  On the Scale-Up of Uneven DBD Reactor on Removal of Diesel Particulate Matter , 2009 .

[90]  Gregor E. Morfill,et al.  Plasma medicine: an introductory review , 2009 .

[91]  K. Cen,et al.  Nitrogen dioxide formation in the gliding arc discharge-assisted decomposition of volatile organic compounds. , 2009, Journal of hazardous materials.

[92]  V. Deshpande,et al.  Effect of SiO2 and Al2O3 addition on the density, Tg and CTE of mixed alkali ? alkaline earth borate glass , 2009 .

[93]  S. Ji,et al.  Scale-Up Synthesis of Hydrogen Peroxide from H2/O2 with Multiple Parallel DBD Tubes , 2009 .

[94]  A. Mizuno,et al.  Analysis of the By-Products in the Ammonia Production From Urea by Dielectric Barrier Discharge , 2009, IEEE Transactions on Plasma Science.

[95]  A. Khacef,et al.  Degradation of Organics Compounds and Production of Activated Species in Dielectric Barrier Discharges and Glidarc Reactors , 2008, 0810.5433.

[96]  W. Winiwarter,et al.  How a century of ammonia synthesis changed the world , 2008 .

[97]  Zhitao Zhang,et al.  Synthesis of Ammonia Using CH4/N2 Plasmas Based on Micro-Gap Discharge under Environmentally Friendly Condition , 2008 .

[98]  J. Galloway,et al.  Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions , 2008, Science.

[99]  H. Sekiguchi,et al.  Synthesis of ammonia using microwave discharge at atmospheric pressure , 2008 .

[100]  M. Chang,et al.  Review of Packed-Bed Plasma Reactor for Ozone Generation and Air Pollution Control , 2008 .

[101]  Guillaume Petitpas,et al.  A comparative study of non-thermal plasma assisted reforming technologies , 2007 .

[102]  D. Yang,et al.  Gliding arc plasma processing of CO2 conversion. , 2007, Journal of hazardous materials.

[103]  Junjia He,et al.  Study on Production of Inhaled Nitric Oxide for Medical Applications by Pulsed Discharge , 2007, IEEE Transactions on Plasma Science.

[104]  M. Itoh,et al.  AMMONIA SYNTHESIS ON MAGNESIA SUPPORTED RUTHENIUM CATALYSTS WITH MESOPOROUS STRUCTURE , 2007 .

[105]  R. Schrock Reduction of dinitrogen , 2006, Proceedings of the National Academy of Sciences.

[106]  J. Röpcke,et al.  Molecule synthesis in an Ar–CH4–O2–N2 microwave plasma , 2006 .

[107]  Malay K. Mazumder,et al.  Twenty-first century research needs in electrostatic processes applied to industry and medicine , 2006 .

[108]  F. Barbir PEM electrolysis for production of hydrogen from renewable energy sources , 2005 .

[109]  U. Kogelschatz Atmospheric-pressure plasma technology , 2004 .

[110]  Y. Mok Oxidation of NO to NO2 Using the Ozonization Method for the Improvement of Selective Catalytic Reduction , 2004 .

[111]  S. Fields Global Nitrogen: Cycling out of Control , 2004, Environmental health perspectives.

[112]  N. Kakuta,et al.  Tubular membrane-like catalyst for reactor with dielectric-barrier-discharge plasma and its performance in ammonia synthesis , 2004 .

[113]  I-Feng W. Kuo,et al.  An ab Initio Molecular Dynamics Study of the Aqueous Liquid-Vapor Interface , 2004, Science.

[114]  Zhitao Zhang,et al.  Plasma synthesis of ammonia with a microgap dielectric barrier discharge at ambient pressure , 2003 .

[115]  Xuefeng Yang,et al.  Formation of NOx from N2 and O2 in catalyst-pellet filled dielectric barrier discharges at atmospheric pressure. , 2003, Chemical communications.

[116]  W. S. Kang,et al.  Numerical study on influences of barrier arrangements on dielectric barrier discharge characteristics , 2003 .

[117]  U. Kogelschatz Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications , 2003 .

[118]  R. Streatfeild,et al.  Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production , 2002 .

[119]  R. Hackam,et al.  Production of nitric oxide using a pulsed arc discharge , 2002 .

[120]  Sally M. Horrocks,et al.  Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food (review) , 2002 .

[121]  R. Ono,et al.  NO formation in a pulsed spark discharge in N2/O2/Ar mixture at atmospheric pressure , 2002 .

[122]  V. Smil Nitrogen and Food Production: Proteins for Human Diets , 2002, Ambio.

[123]  E. Cowling,et al.  Reactive Nitrogen and The World: 200 Years of Change , 2002, Ambio.

[124]  A. Nakayama,et al.  Acetylene and hydrogen from pulsed plasma conversion of methane , 2001 .

[125]  Xu Xu,et al.  Dielectric barrier discharge — properties and applications , 2001 .

[126]  V. Cooray,et al.  NOx production in spark and corona discharges , 2001 .

[127]  Zhang Zhitao,et al.  Synthesis of Ammonia in a Strong Electric Field Discharge at Ambient Pressure , 2000 .

[128]  M. Schmidt,et al.  Plasma generation and plasma sources , 2000 .

[129]  R. Hackam,et al.  Production of nitric monoxide in dry air using pulsed discharge , 1999, Digest of Technical Papers. 12th IEEE International Pulsed Power Conference. (Cat. No.99CH36358).

[130]  J. Legrand,et al.  Methane conversion by an air microwave plasma , 1995 .

[131]  O. Matsumoto,et al.  Synergistic effects of catalysts and plasmas on the synthesis of ammonia and hydrazine , 1994, Plasma Chemistry and Plasma Processing.

[132]  R. Ben-Aim,et al.  A kinetic study of methane conversion by a dinitrogen microwave plasma , 1994 .

[133]  A. Czernichowski,et al.  Gliding arc: Applications to engineering and environment control , 1994 .

[134]  O. Matsumoto,et al.  Catalytic effect of iron wires on the syntheses of ammonia and hydrazine in a radio-frequency discharge , 1993 .

[135]  Ulrich Kogelschatz,et al.  Nonequilibrium volume plasma chemical processing , 1991 .

[136]  O. Matsumoto,et al.  Synthesis of ammonia in high-frequency discharges , 1989 .

[137]  H. Miura,et al.  Ammonia synthesis by means of plasma over MgO catalyst , 1986 .

[138]  B. Mutel,et al.  Energy cost improvement of the nitrogen oxides synthesis in a low pressure plasma , 1984 .

[139]  M. Venugopalan,et al.  Plasma chemical synthesis. I. Effect of electrode material on the synthesis of ammonia , 1983 .

[140]  J. Amouroux,et al.  Processus catalytiques dans un réacteur à plasma hors d'équilibre II. Fixation de l'azote dans le système N2-O2 , 1980 .

[141]  P. Fauchais,et al.  Physics on plasma chemistry , 1979 .

[142]  P. Ammann,et al.  Chemical reactions during rapid quenching of oxygen‐nitrogen mixtures from very high temperatures , 1966 .

[143]  S. Eyde Oxidation of Atmospheric Nitrogen and Development of Resulting Industries in Norway. , 1912 .

[144]  L. Buchori,et al.  Effect of Catalyst Pellet-Diameter and Basicity on Transesterification of Soybean Oil into Biodiesel using K2O/CaO-ZnO Catalyst over Hybrid Catalytic-Plasma Reactor , 2018 .

[145]  Shao-hua Wen,et al.  Influences of frequency on nitrogen fixation of dielectric barrier discharge in air , 2018 .

[146]  S. Prawer,et al.  Plasma Catalysis as an Alternative Route for Ammonia Production: Status, Mechanisms, and Prospects for Progress , 2018 .

[147]  H. Javed,et al.  Calculation of Ozone and NOx Production under AC Corona Discharge in Dry Air Used for Faults Diagnostic , 2016 .

[148]  K. Schoenbach,et al.  Ozone-free nitric oxide production using an atmospheric pressure surface discharge – A way to minimize nitrogen dioxide co-production , 2016 .

[149]  J. Whitehead The Chemistry of Cold Plasma , 2016 .

[150]  Bs Bhaskar Patil,et al.  Plasma Nitrogen Oxides Synthesis in a Milli-Scale Gliding Arc Reactor: Investigating the Electrical and Process Parameters , 2015, Plasma Chemistry and Plasma Processing.

[151]  M. Yousfi,et al.  Characterization of double dielectric barrier discharge and microwave plasma jets in argon at atmospheric pressure for biomedical applications , 2015 .

[152]  Allison M. Leach,et al.  Nitrogen: too much of a vital resource , 2015 .

[153]  Anthony S. Travis The Synthetic Nitrogen Industry in World War I: Its Emergence and Expansion , 2015 .

[154]  D. Graves,et al.  Air plasma for nitrogen fixation: an old idea with new promise , 2015 .

[155]  A. Travis Electric Arcs, Cyanamide, Carl Bosch and Fritz Haber , 2015 .

[156]  S. Tenney The Nitrogen Cycle : Processes , Players , and Human Impact | Learn Scien , 2012 .

[157]  A. Mizuno,et al.  Catalyst Size Impact on Non-Thermal Plasma Catalyst Assisted deNO x Reactors , 2009 .

[158]  Radu Burlica,et al.  Formation of reactive species in gliding arc discharges with liquid water , 2006 .

[159]  K. Fisher,et al.  CHAPTER 1 – Nitrogen Fixation – A General Overview , 2002 .

[160]  R. Hrach,et al.  Mechanisms of methane decomposition in nitrogen afterglow plasma , 1999 .

[161]  G. Roberts,et al.  Biological nitrogen fixation. , 1993, Annual review of nutrition.

[162]  K. Tamaru The History of the Development of Ammonia Synthesis , 1991 .

[163]  H. Hiller In: Ullmann''''s Encyclopedia of Industrial Chemistry , 1989 .

[164]  A. Fridman,et al.  REVIEWS OF TOPICAL PROBLEMS: The physics of a chemically active plasma with nonequilibrium vibrational excitation of molecules , 1981 .

[165]  Mundiyath Venugopalan,et al.  Plasma Chemistry I , 1980 .

[166]  Kr. Birkeland On the oxidation of atmospheric nitrogen in electric arcs , 1906 .

[167]  Haber Bosch,et al.  The Haber-Bosch Heritage: The Ammonia Production Technology , 2022 .