Beam stability of buried-heterostructure quantum cascade lasers formed by ICP-etching and HVPE regrowth
暂无分享,去创建一个
Yan-Ting Sun | Sebastian Lourdudoss | Dan Botez | Luke J. Mawst | Jae Ha Ryu | Jeremy D. Kirch | Benjamin Knipfer | Zerui Liu | Morgan Turville-Heitz | Tom Earles | Robert A. Marsland | Axel Strömberg | Giriprasanth Omanakuttan | L. Mawst | J. Kirch | D. Botez | T. Earles | R. Marsland | G. Omanakuttan | S. Lourdudoss | J. Ryu | B. Knipfer | Zerui Liu | A. Strömberg | Yanting Sun | M. Turville-Heitz
[1] M. Razeghi,et al. Beam steering in high-power CW quantum-cascade lasers , 2005, IEEE Journal of Quantum Electronics.
[2] O. Heavens. Optical properties of thin films — Where to? , 1978 .
[3] F. Choa,et al. Analysis of InP Regrowth on Deep-Etched Mesas and Structural Characterization for Buried-Heterostructure Quantum Cascade Lasers , 2012, Journal of Electronic Materials.
[5] Resonant leaky-wave coupling in linear arrays of antiguides , 1988 .
[6] Federico Capasso,et al. High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings , 2009 .
[7] S. Corzine,et al. Coherent coupling of multiple transverse modes in a quantum cascade laser , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.
[8] R. J. Bell,et al. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. , 1985, Applied optics.
[9] L. Mawst,et al. 5.5 W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers , 2015 .
[10] R. J. Bell,et al. Optical properties of Au, Ni, and Pb at submillimeter wavelengths. , 1987, Applied optics.
[11] Thomas Erneux,et al. Stability conditions for coupled lasers: series coupling versus parallel coupling , 1993 .
[12] S.J.B. Yoo,et al. Monolithically integrated InP-based photonic chip development for O-CDMA systems , 2005, IEEE Journal of Selected Topics in Quantum Electronics.
[13] Manijeh Razeghi,et al. Highly temperature insensitive quantum cascade lasers , 2010 .
[14] Mathieu Carras,et al. Beam steering in quantum cascade lasers with optical feedback , 2017, OPTO.
[15] L. Mawst,et al. Beam stability of buried-heterostructure quantum cascade lasers employing HVPE regrowth. , 2021, Optics express.
[16] 5.3 μm-Emitting Diffraction-Limited Leaky-Wave-Coupled Quantum Cascade Laser Phase-Locked Array , 2019, IEEE Journal of Selected Topics in Quantum Electronics.
[17] R. A. Logan,et al. Observation of growth patterns during atmospheric pressure metalorganic vapor phase epitaxy regrowth of InP around etched mesas , 1993 .
[18] Dan Botez,et al. Phase-locked arrays of antiguides: model content and discrimination , 1990 .
[19] R. J. Bell,et al. Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths. , 1988, Applied optics.
[20] W. Fader,et al. Normal modes of N coupled lasers. , 1985, Optics letters.
[21] Wondwosen Metaferia,et al. Demonstration of a quick process to achieve buried heterostructure quantum cascade laser leading to high power and wall plug efficiency , 2014 .
[22] Dan Botez,et al. Temperature sensitivity of the electro-optical characteristics for mid-infrared (λ = 3–16 μm)-emitting quantum cascade lasers , 2016 .