Dependence of the lifetime upon the excitation energy and intramolecular energy transfer rates: the 5D0Eu(III) emission case.

In many Eu(III)-based materials, the presence of an intermediate energy level, such as ligand-to-metal charge transfer (LMCT) states or defects, that mediates the energy transfer mechanisms can strongly affect the lifetime of the (5)D(0) state, mainly at near-resonance (large transfer rates). We present results for the dependence of the (5)D(0) lifetime on the excitation wavelength for a wide class of Eu(III)-based compounds: ionic salts, polyoxometalates (POMs), core/shell inorganic nanoparticles (NPs) and nanotubes, coordination polymers, β-diketonate complexes, organic-inorganic hybrids, macro-mesocellular foams, functionalized mesoporous silica, and layered double hydroxides (LDHs). This yet unexplained behavior is successfully modelled by a coupled set of rate equations with seven states, in which the wavelength dependence is simulated by varying the intramolecular energy transfer rates. In addition, the simulations of the rate equations for four- and three-level systems show a strong dependence of the emission lifetime upon the excitation wavelength if near-resonant non-radiative energy transfer processes are present, indicating that the proposed scheme can be generalized to other trivalent lanthanide ions, as observed for Tb(III)/Ce(III). Finally, the proper use of lifetime definition in the presence of energy transfer is emphasized.

[1]  M. Grossel,et al.  Modified dipicolinic acid ligands for sensitization of europium(III) luminescence. , 2006, Inorganic chemistry.

[2]  M. O. Rodrigues,et al.  High photoluminescent metal-organic frameworks as optical markers for the identification of gunshot residues. , 2011, Analytical chemistry.

[3]  T. Trindade,et al.  Lanthanopolyoxotungstates in silica nanoparticles: multi-wavelength photoluminescent core/shell materials , 2010 .

[4]  H. Nogueira,et al.  A theoretical interpretation of the abnormal 5D0→7F4 intensity based on the Eu3+ local coordination in the Na9[EuW10O36]·14H2O polyoxometalate , 2006 .

[5]  L. Carlos,et al.  Luminescent and magnetic cyano-bridged coordination polymers containing 4d-4f ions: toward multifunctional materials. , 2009, Inorganic chemistry.

[6]  L. Carlos,et al.  Effects of Phonon Confinement on Anomalous Thermalization, Energy Transfer, and Upconversion in Ln3+‐Doped Gd2O3 Nanotubes , 2010 .

[7]  T. Trindade,et al.  Luminescent Polyoxotungstoeuropate Anion‐Pillared Layered Double Hydroxides , 2006 .

[8]  M. Taillefer,et al.  Lanthanide-Containing 2,2′-Bipyridine Bridged Urea Cross-Linked Polysilsesquioxanes , 2010 .

[9]  S. Ribeiro,et al.  Energy-transfer mechanisms and emission quantum yields in Eu3+-based siloxane-poly(oxyethylene) nanohybrids , 2001 .

[10]  J. G. Solé,et al.  An Introduction to the Optical Spectroscopy of Inorganic Solids , 2005 .

[11]  D. L. Dexter A Theory of Sensitized Luminescence in Solids , 1953 .

[12]  Paul R Selvin,et al.  Principles and biophysical applications of lanthanide-based probes. , 2002, Annual review of biophysics and biomolecular structure.

[13]  H. Nogueira,et al.  Lanthanopolyoxometalates as Building Blocks for Multiwavelength Photoluminescent Organic-Inorganic Hybrid Materials , 2009 .

[14]  O. Malta Mechanisms of non-radiative energy transfer involving lanthanide ions revisited , 2008 .

[15]  W. M. Faustino,et al.  Intramolecular energy transfer through charge transfer state in lanthanide compounds: a theoretical approach. , 2005, The Journal of chemical physics.

[16]  G. Qian,et al.  Spectroscopic studies on the Eu(BTA)3·2H2O complex in situ synthesized in the vinyl modified silicate , 2001 .

[17]  C. B. Thomas,et al.  Modeling the fluorescent lifetime of Y2O3:Eu , 1998 .

[18]  L. Carlos,et al.  Immobilization of Lanthanide Ions in a Pillared Layered Double Hydroxide , 2005 .

[19]  C. M. Donegá,et al.  Europium(III) mixed complexes with β-diketones and o-phenanthroline-N-oxide as promising light-conversion molecular devices , 1996 .

[20]  J. Bünzli,et al.  Structural and photophysical properties of europium(III) mixed complexes with β-diketonates and o-phenanthroline , 1994 .

[21]  Koen Binnemans,et al.  Lanthanide-based luminescent hybrid materials. , 2009, Chemical reviews.

[22]  O. Malta,et al.  A theoretical approach to intramolecular energy transfer and emission quantum yields in coordination compounds of rare earth ions , 1998 .

[23]  J. Bünzli Europium in the limelight. , 2010, Nature chemistry.

[24]  R. Longo,et al.  On the dependence of the luminescence intensity of rare-earth compounds with pressure: a theoretical study of Eu(TTF)32H2O in polymeric solution and crystalline phases , 1999 .

[25]  Jorge Morgado,et al.  Highly Photostable Luminescent Poly(ε-caprolactone)siloxane Biohybrids Doped with Europium Complexes , 2007 .

[26]  V. Bermudez,et al.  Ligand-Assisted Rational Design and Supramolecular Tectonics toward Highly Luminescent Eu3+-Containing Organic−Inorganic Hybrids , 2009 .

[27]  S. Ribeiro,et al.  Photoluminescence of bulks and thin films of Eu3+-doped organic/inorganic hybrids , 2008 .

[28]  Y. Messaddeq,et al.  Enhanced emission from Eu(III) β-diketone complex combined with ether-type oxygen atoms of di-ureasil organic-inorganic hybrids , 2003 .

[29]  O. Malta Ligand-rare-earth ion energy transfer in coordination compounds. A theoretical approach , 1997 .

[30]  Rute A. S. Ferreira,et al.  Lanthanide‐Containing Light‐Emitting Organic–Inorganic Hybrids: A Bet on the Future , 2009, Advanced materials.

[31]  V. Bermudez,et al.  Dual role of a di-urethanesil hybrid doped with europium β-diketonate complexes containing either water ligands or a bulky chelating ligand , 2009 .

[32]  N. Brun,et al.  Eu3+@Organo-Si(HIPE) Macro-Mesocellular Hybrid Foams Generation: Syntheses, Characterizations, and Photonic Properties , 2008 .

[33]  T. Pauporté,et al.  Hybrid layers of ZnO/lanthanide complexes with high visible luminescences , 2006 .

[34]  V. Bermudez,et al.  Incorporation of the Eu(tta)3(H2O)2 complex into a co-condensed d-U(600)/d-U(900) matrix , 2008 .

[35]  R. Longo,et al.  Spectroscopic properties and design of highly luminescent lanthanide coordination complexes , 2000 .

[36]  José A Fernandes,et al.  Highly Luminescent Tris(β-diketonate)europium(III) Complexes Immobilized in a Functionalized Mesoporous Silica , 2005 .

[37]  Alfred Ehmert,et al.  Ein einfaches Verfahren zur Messung kleinster Jodkonzentrationen, Jod- und Natriumthiosulfatmengen in Lösungen , 1949 .

[38]  F. Auzel Upconversion and anti-Stokes processes with f and d ions in solids. , 2004, Chemical reviews.

[39]  J. Ni,et al.  Luminescence properties of the ternary rare earth complexes with β-diketones and 1,10-phenanthroline incorporated in silica matrix by a sol-gel method , 1997 .

[40]  J. Zavada,et al.  Luminescence spectroscopy of europium doped gallium nitride powder prepared by a Na flux method , 2011 .

[41]  E. Longo,et al.  The Role of the Eu3+ Concentration on the SrMoO4:Eu Phosphor Properties: Synthesis, Characterization and Photophysical Studies , 2011, Journal of Fluorescence.

[42]  C. M. Donegá,et al.  Synthesis, luminescence and quantum yields of Eu(III) mixed complexes with 4,4,4-trifluoro-1-phenyl-1,3-butanedione and 1,10-phenanthroline-N-oxide , 1997 .