Formal Languages over GF(2)
暂无分享,去创建一个
Alexander Okhotin | Ekaterina Bakinova | Artem Basharin | Igor Batmanov | Konstantin Lyubort | Elizaveta Sazhneva
[1] Gilles Christol,et al. Ensembles Presque Periodiques k-Reconnaissables , 1979, Theor. Comput. Sci..
[2] Michael Domaratzki,et al. Orthogonal Concatenation: Language Equations and State Complexity , 2010, J. Univers. Comput. Sci..
[3] Géraud Sénizergues,et al. L(A) = L(B) ? decidability results from complete formal systems , 2001 .
[4] Alexander Okhotin,et al. State Complexity of GF(2)-Concatenation and GF(2)-Inverse on Unary Languages , 2019, DCFS.
[5] Artur Jez,et al. Conjunctive Grammars over a Unary Alphabet: Undecidability and Unbounded Growth , 2008, Theory of Computing Systems.
[6] Gregory V. Bard,et al. Algorithm 898: Efficient multiplication of dense matrices over GF(2) , 2010, TOMS.
[7] Alexander Okhotin,et al. State Complexity of Unambiguous Operations on Deterministic Finite Automata , 2018, DCFS.
[8] Leslie G. Valiant,et al. General Context-Free Recognition in Less than Cubic Time , 1975, J. Comput. Syst. Sci..
[9] Alexander Okhotin,et al. On the equivalence of linear conjunctive grammars and trellis automata , 2004, RAIRO Theor. Informatics Appl..
[10] Lynette van Zijl,et al. Magic numbers for symmetric difference NFAS , 2004, Int. J. Found. Comput. Sci..
[11] Richard P. Brent. A PARALLEL ALGORITHM FOR CONTEXT-FREE PARSING , 2003 .
[12] Carsten Damm,et al. Problems Complete for \oplus L , 1990, Inf. Process. Lett..
[13] L. Goldschlager. The monotone and planar circuit value problems are log space complete for P , 1977, SIGA.
[14] A. L. Semenov,et al. Algorthmic Problems for Power Series and Context-free Grammars , 1973 .
[15] Seymour Ginsburg,et al. Two Families of Languages Related to ALGOL , 1962, JACM.
[16] Alexander Okhotin,et al. Conjunctive and Boolean grammars: The true general case of the context-free grammars , 2013, Comput. Sci. Rev..
[17] Wojciech Rytter. On the recognition of context-free languages , 1984, Symposium on Computation Theory.
[18] Artur Jez. Conjunctive Grammars Can Generate Non-regular Unary Languages , 2007, Developments in Language Theory.
[19] Artur Jez,et al. Unambiguous conjunctive grammars over a one-symbol alphabet , 2017, Theor. Comput. Sci..
[20] Alexander Okhotin,et al. On the expressive power of univariate equations over sets of natural numbers , 2012, Inf. Comput..
[21] Artur Jez,et al. Complexity of Equations over Sets of Natural Numbers , 2009, Theory of Computing Systems.
[22] Carsten Damm,et al. Problems Complete for +L , 1990, IMYCS.
[23] I. Petre,et al. Algebraic Systems and Pushdown Automata , 2009 .
[24] Alexander Okhotin. Parsing by matrix multiplication generalized to Boolean grammars , 2014, Theor. Comput. Sci..
[25] Alexander Okhotin,et al. Underlying Principles and Recurring Ideas of Formal Grammars , 2018, LATA.
[26] Gregory V. Bard,et al. Efficient Multiplication of Dense Matrices over GF(2) , 2008, ArXiv.
[27] Lynette van Zijl,et al. On binary ⊕-NFAs and succinct descriptions of regular languages , 2004, Theor. Comput. Sci..
[28] Ivan Hal Sudborough,et al. A Note on Tape-Bounded Complexity Classes and Linear Context-Free languages , 1975, JACM.
[29] Wojciech Rytter,et al. Oberservation on log(n) Time Parallel Recognition of Unambiguous cfl's , 1992, Inf. Process. Lett..
[30] Sheng Yu,et al. The State Complexities of Some Basic Operations on Regular Languages , 1994, Theor. Comput. Sci..
[31] Alexander Okhotin,et al. On the Expressive Power of GF(2)-Grammars , 2019, SOFSEM.
[32] Ernst L. Leiss,et al. Unrestricted Complementation in Language Equations Over a One-Letter Alphabet , 1994, Theor. Comput. Sci..
[33] Janusz A. Brzozowski. Quotient Complexity of Regular Languages , 2010, J. Autom. Lang. Comb..