Formal Languages over GF(2)

Variants of the union and concatenation operations on formal languages are investigated, in which Boolean logic in the definitions (that is, conjunction and disjunction) is replaced with the operations in the two-element field GF(2) (conjunction and exclusive OR). Union is thus replaced with symmetric difference, whereas concatenation gives rise to a new GF(2)-concatenation operation, which is notable for being invertible. All operations preserve regularity, and their state complexity is determined. Next, a new class of formal grammars based on GF(2)-operations is defined, and it is shown to have the same computational complexity as ordinary grammars with union and concatenation.

[1]  Gilles Christol,et al.  Ensembles Presque Periodiques k-Reconnaissables , 1979, Theor. Comput. Sci..

[2]  Michael Domaratzki,et al.  Orthogonal Concatenation: Language Equations and State Complexity , 2010, J. Univers. Comput. Sci..

[3]  Géraud Sénizergues,et al.  L(A) = L(B) ? decidability results from complete formal systems , 2001 .

[4]  Alexander Okhotin,et al.  State Complexity of GF(2)-Concatenation and GF(2)-Inverse on Unary Languages , 2019, DCFS.

[5]  Artur Jez,et al.  Conjunctive Grammars over a Unary Alphabet: Undecidability and Unbounded Growth , 2008, Theory of Computing Systems.

[6]  Gregory V. Bard,et al.  Algorithm 898: Efficient multiplication of dense matrices over GF(2) , 2010, TOMS.

[7]  Alexander Okhotin,et al.  State Complexity of Unambiguous Operations on Deterministic Finite Automata , 2018, DCFS.

[8]  Leslie G. Valiant,et al.  General Context-Free Recognition in Less than Cubic Time , 1975, J. Comput. Syst. Sci..

[9]  Alexander Okhotin,et al.  On the equivalence of linear conjunctive grammars and trellis automata , 2004, RAIRO Theor. Informatics Appl..

[10]  Lynette van Zijl,et al.  Magic numbers for symmetric difference NFAS , 2004, Int. J. Found. Comput. Sci..

[11]  Richard P. Brent A PARALLEL ALGORITHM FOR CONTEXT-FREE PARSING , 2003 .

[12]  Carsten Damm,et al.  Problems Complete for \oplus L , 1990, Inf. Process. Lett..

[13]  L. Goldschlager The monotone and planar circuit value problems are log space complete for P , 1977, SIGA.

[14]  A. L. Semenov,et al.  Algorthmic Problems for Power Series and Context-free Grammars , 1973 .

[15]  Seymour Ginsburg,et al.  Two Families of Languages Related to ALGOL , 1962, JACM.

[16]  Alexander Okhotin,et al.  Conjunctive and Boolean grammars: The true general case of the context-free grammars , 2013, Comput. Sci. Rev..

[17]  Wojciech Rytter On the recognition of context-free languages , 1984, Symposium on Computation Theory.

[18]  Artur Jez Conjunctive Grammars Can Generate Non-regular Unary Languages , 2007, Developments in Language Theory.

[19]  Artur Jez,et al.  Unambiguous conjunctive grammars over a one-symbol alphabet , 2017, Theor. Comput. Sci..

[20]  Alexander Okhotin,et al.  On the expressive power of univariate equations over sets of natural numbers , 2012, Inf. Comput..

[21]  Artur Jez,et al.  Complexity of Equations over Sets of Natural Numbers , 2009, Theory of Computing Systems.

[22]  Carsten Damm,et al.  Problems Complete for +L , 1990, IMYCS.

[23]  I. Petre,et al.  Algebraic Systems and Pushdown Automata , 2009 .

[24]  Alexander Okhotin Parsing by matrix multiplication generalized to Boolean grammars , 2014, Theor. Comput. Sci..

[25]  Alexander Okhotin,et al.  Underlying Principles and Recurring Ideas of Formal Grammars , 2018, LATA.

[26]  Gregory V. Bard,et al.  Efficient Multiplication of Dense Matrices over GF(2) , 2008, ArXiv.

[27]  Lynette van Zijl,et al.  On binary ⊕-NFAs and succinct descriptions of regular languages , 2004, Theor. Comput. Sci..

[28]  Ivan Hal Sudborough,et al.  A Note on Tape-Bounded Complexity Classes and Linear Context-Free languages , 1975, JACM.

[29]  Wojciech Rytter,et al.  Oberservation on log(n) Time Parallel Recognition of Unambiguous cfl's , 1992, Inf. Process. Lett..

[30]  Sheng Yu,et al.  The State Complexities of Some Basic Operations on Regular Languages , 1994, Theor. Comput. Sci..

[31]  Alexander Okhotin,et al.  On the Expressive Power of GF(2)-Grammars , 2019, SOFSEM.

[32]  Ernst L. Leiss,et al.  Unrestricted Complementation in Language Equations Over a One-Letter Alphabet , 1994, Theor. Comput. Sci..

[33]  Janusz A. Brzozowski Quotient Complexity of Regular Languages , 2010, J. Autom. Lang. Comb..