Syntax and consistent equation semantics of hybrid Chi

Abstract The hybrid χ (Chi) formalism integrates concepts from dynamics and control theory with concepts from computer science, in particular from process algebra and hybrid automata. It integrates ease of modeling with a straightforward, structured operational semantics. Its ‘consistent equation semantics’ enforces state changes to be consistent with delay predicates, that combine the invariant and flow clauses of hybrid automata. Ease of modeling is ensured by means of the following concepts: (1) different classes of variables: discrete and continuous, of subclass jumping or non-jumping, and algebraic; (2) strong time determinism of alternative composition in combination with delayable guards; (3) integration of urgent and non-urgent actions; (4) differential algebraic equations as a process term as in mathematics; (5) steady-state initialization; and 6) several user-friendly syntactic extensions. Furthermore, the χ formalism incorporates several concepts for complex system specification: (1) process terms for scoping that integrate abstraction, local variables, local channels and local recursion definitions; (2) process definition and instantiation that enable process re-use, encapsulation, hierarchical and/or modular composition of processes; and (3) different interaction mechanisms: handshake synchronization and synchronous communication that allow interaction between processes without sharing variables, and shared variables that enable modular composition of continuous-time or hybrid processes. The syntax and semantics are illustrated using several examples.

[1]  Wang Yi,et al.  Uppaal in a nutshell , 1997, International Journal on Software Tools for Technology Transfer.

[2]  Henk Nijmeijer,et al.  Convex equations and differential inclusions in hybrid systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[3]  Michel A. Reniers,et al.  Linearization of hybrid processes , 2006, J. Log. Algebraic Methods Program..

[4]  Thomas A. Henzinger,et al.  Hybrid systems III : verification and control , 1996 .

[5]  Bart De Schutter,et al.  Equivalence of hybrid dynamical models , 2001, Autom..

[6]  Ka Lok Man,et al.  Formal Semantics of Hybrid Chi , 2003, FORMATS.

[7]  Shouchuan Hu Differential equations with discontinuous right-hand sides☆ , 1991 .

[8]  Hosung Song,et al.  The Phi-Calculus: A Language for Distributed Control of Reconfigurable Embedded Systems , 2003, HSCC.

[9]  Olivier Bournez,et al.  Approximate Reachability Analysis of Piecewise-Linear Dynamical Systems , 2000, HSCC.

[10]  Luca Aceto,et al.  Structural Operational Semantics , 1999, Handbook of Process Algebra.

[11]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[12]  V Victor Bos,et al.  Automatic verification of a manufacturing system , 2001 .

[13]  René David,et al.  On Hybrid Petri Nets , 2001, Discret. Event Dyn. Syst..

[14]  J. E. Rooda,et al.  Integrating continuous-time and discrete-event concepts in modelling and simulation of manufacturing machines , 1997, Simul. Pract. Theory.

[15]  Thomas A. Henzinger,et al.  Automatic symbolic verification of embedded systems , 1993, 1993 Proceedings Real-Time Systems Symposium.

[16]  Jan Friso Groote,et al.  Notions of bisimulation and congruence formats for SOS with data , 2005, Inf. Comput..

[17]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[18]  Thomas A. Henzinger,et al.  A User Guide to HyTech , 1995, TACAS.

[19]  Goran Frehse,et al.  PHAVer: algorithmic verification of hybrid systems past HyTech , 2005, International Journal on Software Tools for Technology Transfer.

[20]  Thomas A. Henzinger Masaccio: A Formal Model for Embedded Components , 2000, IFIP TCS.

[21]  Jos C. M. Baeten,et al.  Process Algebra with Timing , 2002, Monographs in Theoretical Computer Science. An EATCS Series.

[22]  Vijay Kumar,et al.  Hierarchical modeling and analysis of embedded systems , 2003, Proc. IEEE.

[23]  G Georgina Fabian,et al.  A language and simulator for hybrid systems , 1999 .

[24]  Olaf Stursberg,et al.  Verification of Hybrid Systems Based on Counterexample-Guided Abstraction Refinement , 2003, TACAS.

[25]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[26]  Johannes Schumacher,et al.  An Introduction to Hybrid Dynamical Systems, Springer Lecture Notes in Control and Information Sciences 251 , 1999 .

[27]  J. Bergstra,et al.  Handbook of Process Algebra , 2001 .

[28]  V Victor Bos,et al.  Formal specification and analysis of industrial systems , 2002 .

[29]  Thomas A. Henzinger,et al.  The theory of hybrid automata , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[30]  Jan A. Bergstra,et al.  Process Algebra with Propositional Signals , 1994, Theor. Comput. Sci..

[31]  Published as: , 1991 .

[32]  Mohammad Reza Mousavi,et al.  Congruence for SOS with data , 2004, LICS 2004.

[33]  A. W. Roscoe A classical mind: essays in honour of C. A. R. Hoare , 1994 .

[34]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[35]  J. F. Groote The Syntax and Semantics of timed μ CRL , 1997 .

[36]  Gordon D. Plotkin,et al.  A structural approach to operational semantics , 2004, J. Log. Algebraic Methods Program..

[37]  Gerard J. Holzmann,et al.  The SPIN Model Checker - primer and reference manual , 2003 .

[38]  Joseph Sifakis,et al.  The Algebra of Timed Processes, ATP: Theory and Application , 1994, Inf. Comput..

[39]  Karl Henrik Johansson,et al.  Dynamical properties of hybrid automata , 2003, IEEE Trans. Autom. Control..

[40]  Jacobus E. Rooda,et al.  Syntax and semantics of timed Chi , 2005 .

[41]  Chris Verhoef,et al.  Concrete process algebra , 1995, LICS 1995.

[42]  He Jifeng,et al.  From CSP to hybrid systems , 1994 .

[43]  Michael W. Shields Hybrid Transition Systems , 1997 .

[44]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[45]  Jan Joris Vereijken A Process Algebra for Hybrid Systems , 1999 .

[46]  Goran Frehse PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech , 2005, HSCC.

[47]  Michel A. Reniers,et al.  Hybrid process algebra , 2005, J. Log. Algebraic Methods Program..

[48]  Anders P. Ravn,et al.  A Formal Description of Hybrid Systems , 1996, Hybrid Systems.

[49]  Stavros Tripakis,et al.  The Tool KRONOS , 1996, Hybrid Systems.

[50]  T. Henzinger,et al.  Algorithmic Analysis of Nonlinear Hybrid Systems , 1998, CAV.

[51]  G Goce Naumoski,et al.  A discrete-event simulator for systems engineering , 1998 .

[52]  Sumit Kumar Jha,et al.  Refining Abstractions of Hybrid Systems Using Counterexample Fragments , 2005, HSCC.

[53]  Rupak Majumdar,et al.  Tools and Algorithms for the Construction and Analysis of Systems , 1997, Lecture Notes in Computer Science.

[54]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[55]  Rajeev Alur,et al.  Progress on Reachability Analysis of Hybrid Systems Using Predicate Abstraction , 2003, HSCC.

[56]  Jos C. M. Baeten,et al.  Process Algebra , 2007, Handbook of Dynamic System Modeling.

[57]  D. A. van Beek,et al.  LANGUAGES AND APPLICATIONS IN HYBRID MODELLING AND SIMULATION: POSITIONING OF CHI , 2000 .

[58]  Dirk A. van Beek,et al.  Modelling and control of process industry batch production systems , 2002 .

[59]  Ka Lok Man,et al.  A Hybrid Language for Modeling, Simulation and Verification , 2003, ADHS.

[60]  Stefan Ratschan,et al.  Safety verification of hybrid systems by constraint propagation-based abstraction refinement , 2007, TECS.

[61]  Nancy A. Lynch,et al.  Hybrid I/O automata , 2003, Inf. Comput..

[62]  Joseph Sifakis,et al.  An Approach to the Description and Analysis of Hybrid Systems , 1992, Hybrid Systems.