Experimental Study on Critical Displacement for Drill-Conductor Injection during Deepwater Drilling

Drill-conductor-jetting technology is a high-efficiency, good-adaptability, and low-cost technology that has been widely applied in deepwater drilling. However, a reaming effect will be produced easily because of jet breaking and bit rotation during the jetting process, and the critical displacement would be notably affected. Also, it will experience a relatively short soaking time after installation because of the requirements of drilling timeliness, which is an important factor on the bearing safety of a conductor. Therefore, it is meaningful to study the influencing factors of construction conditions and establish a model for evaluating the value of critical displacement. In this study, field experiments on critical displacement for simulating the deepwater-drilling conditions were conducted. By analyzing the drilling hydraulic factors, the effects of soil-stress-recovery time, and the injection rate of pipe, the influence laws of different factors were obtained. The results suggest that the critical displacement increases linearly as the circulation rate of the drilling fluid increases, decreases exponentially with the increase of soil-stress-recovery time, and decreases linearly with the increase of injection rate. One model for estimating the critical displacement using experimental data and the least-squares method was proposed. The predictions showed good agreement with experimental data within suitable ranges of models. This work is expected to provide the basis for predicting conductor stability and wellhead-bearing settlement.