Cycle life evaluation of 3 Ah LixMn2O4-based lithium-ion secondary cells for low-earth-orbit satellites I. Full cell results

Lithium-ion batteries are a candidate for the energy storage system onboard low-earth-orbit satellites. Cycle life performance under both orbital and terrestrial conditions must be investigated in ...

[1]  G. Lindbergh,et al.  Impedance as a Tool for Investigating Aging in Lithium-Ion Porous Electrodes I. Physically Based Electrochemical Model , 2008 .

[2]  G. Lindbergh,et al.  Impedance as a Tool for Investigating Aging in Lithium-Ion Porous Electrodes II. Positive Electrode Examination , 2008 .

[3]  Linda F. Nazar,et al.  Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries , 2007 .

[4]  Michael M. Thackeray,et al.  Structural Considerations of Layered and Spinel Lithiated Oxides for Lithium Ion Batteries , 1995 .

[5]  S. P. Vukson,et al.  Lithium-ion testing for spacecraft applications , 2003 .

[6]  J. Tarascon,et al.  Surface treatments of Li1+xMn2-xO4 spinels for improved elevated temperature performance , 1997 .

[7]  Michael M. Thackeray,et al.  Improved capacity retention in rechargeable 4 V lithium/lithium- manganese oxide (spinel) cells , 1994 .

[8]  M. Atanasov,et al.  Electronic Structure, Chemical Bonding, and Vibronic Coupling in MnIV/MnIII Mixed Valent LixMn2O4 Spinels and Their Effect on the Dynamics of Intercalated Li: A Cluster Study Using DFT , 2000 .

[9]  John Newman,et al.  Effect of Anode Film Resistance on the Charge/Discharge Capacity of a Lithium-Ion Battery , 2003 .

[10]  K. Uematsu,et al.  Electrochemical performance of Al-doped LiMn2O4 prepared by different methods in solid-state reaction , 2007 .

[11]  Bugga V. Ratnakumar,et al.  Li ion batteries for aerospace applications , 2001 .

[12]  K. M. Abraham,et al.  Suppression of Toxic Compounds Produced in the Decomposition of Lithium-Ion Battery Electrolytes , 2004 .

[13]  J. Newman,et al.  A mathematical model of stress generation and fracture in lithium manganese oxide , 2006 .

[14]  M.C. Smart,et al.  Lithium-ion batteries for aerospace , 2004, IEEE Aerospace and Electronic Systems Magazine.

[15]  John B. Goodenough,et al.  Electrochemical extraction of lithium from LiMn2O4 , 1984 .

[16]  G. Lindbergh,et al.  Electrochemical investigation of LiMn2O4 cathodes in gel electrolyte at various temperatures , 2002 .

[17]  J. C. Hunter Preparation of a new crystal form of manganese dioxide: λ-MnO2 , 1981 .

[18]  G. Pistoia,et al.  Aspects of the Li+ insertion into LixMn2O4 for 0 , 1993 .

[19]  Marc Doyle,et al.  Computer Simulations of the Impedance Response of Lithium Rechargeable Batteries , 2000 .

[20]  John B. Goodenough,et al.  Lithium insertion into manganese spinels , 1983 .

[21]  J. Dahn,et al.  Correlation between the growth of the 3.3 V discharge plateau and capacity fading in Li1+xMn2−xO4 materials , 1996 .

[22]  Yoshitsugu Sone,et al.  Cycle-life testing of large-capacity lithium-ion cells in simulated satellite operation , 2006 .

[23]  A. Manthiram,et al.  Microstrain and Capacity Fade in Spinel Manganese Oxides , 2002 .

[24]  Li Yang,et al.  A study on capacity fading of lithium-ion battery with manganese spinel positive electrode during cycling , 2006 .

[25]  T. Gustafsson,et al.  Kinetic study of LiMn2O4 cathodes by in situ XRD with constant-current cycling and potential stepping , 2002 .

[26]  B. Lucht,et al.  Inhibition of solid electrolyte interface formation on cathode particles for lithium-ion batteries , 2007 .

[27]  J. Molenda Electronic structure and reactivity of Li1-xMn2O4 cathode , 2000 .

[28]  Y. Shao-horn,et al.  Structural Fatigue in Spinel Electrodes in High Voltage ( 4 V ) Li / Li x Mn2 O 4 Cells , 1999 .

[29]  Hitoshi Naito,et al.  Electrode structure analysis and surface characterization for lithium-ion cells simulated low-Earth-orbit satellite operation I. Electrochemical behavior and structure analysis , 2007 .

[30]  Hitoshi Naito,et al.  Simulated low-earth-orbit cycle-life testing of commercial laminated lithium-ion cells in a vacuum , 2005 .

[31]  Y. S. Lee,et al.  Powder property and electrochemical characterization of Li2MnO3 material , 2007 .

[32]  Brett L. Lucht,et al.  Thermal Decomposition of LiPF6-Based Electrolytes for Lithium-Ion Batteries , 2005 .

[33]  J. Tarascon,et al.  Mechanism for Limited 55°C Storage Performance of Li1.05Mn1.95 O 4 Electrodes , 1999 .

[34]  A. Manthiram,et al.  Comparison of Metal Ion Dissolutions from Lithium Ion Battery Cathodes , 2006 .

[35]  A. Jansen,et al.  Alternating Current Impedance Electrochemical Modeling of Lithium-Ion Positive Electrodes , 2005 .

[36]  K. Shizuka,et al.  Mechanisms of manganese spinels dissolution and capacity fade at high temperature , 2001 .

[37]  D. Aurbach,et al.  Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques , 1999 .

[38]  Dominique Guyomard,et al.  Self-discharge of LiMn2O4/C Li-ion cells in their discharged state: Understanding by means of three-electrode measurements , 1998 .

[39]  E. M. Reynolds,et al.  Temperature Dependence of Capacity and Impedance Data from Fresh and Aged High-Power Lithium-Ion Cells , 2006 .

[40]  G. Farrington,et al.  Electrochemical Characteristics of Spinel Phase LiMn2 O 4‐Based Cathode Materials Prepared by the Pechini Process Influence of Firing Temperature and Dopants , 1996 .

[41]  W. F. Howard,et al.  M3+-modified LiMn2O4 spinel intercalation cathodes: II. Electrochemical stabilization by Cr3+ , 1997 .

[42]  Yoshitsugu Sone,et al.  Effect of operation conditions on simulated low-earth orbit cycle-life testing of commercial lithium-ion polymer cells , 2005 .

[43]  Jean-Marie Tarascon,et al.  Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 compounds through the use of the LiAlxMn2-xO4-zFz solid solution , 2001 .

[44]  P. Bruce,et al.  Correlating Capacity Loss of Stoichiometric and Nonstoichiometric Lithium Manganese Oxide Spinel Electrodes with Their Structural Integrity , 1999 .

[45]  Dennis W. Dees,et al.  Application of a lithium-tin reference electrode to determine electrode contributions to impedance rise in high-power lithium-ion cells , 2004 .

[46]  Michael M. Thackeray,et al.  Structural Changes of LiMn2 O 4 Spinel Electrodes during Electrochemical Cycling , 1999 .

[47]  Takao Inoue,et al.  An Investigation of Capacity Fading of Manganese Spinels Stored at Elevated Temperature , 1998 .

[48]  John Newman,et al.  Cyclable Lithium and Capacity Loss in Li-Ion Cells , 2005 .

[49]  Jean-Marie Tarascon,et al.  Materials' effects on the elevated and room temperature performance of CLiMn2O4 Li-ion batteries , 1997 .

[50]  B. Lucht,et al.  Lithium-Ion Batteries: Thermal Reactions of Electrolyte with the Surface of Metal Oxide Cathode Particles , 2006 .