Acyclic Cucurbit[n]uril‐Type Molecular Containers: Influence of Linker Length on Their Function as Solubilizing Agents

Two acyclic cucurbit[n]uril (CB[n])‐type molecular containers that differ in the length of the (CH2)n linker (M2C2: n=2, M2C4: n=4) between their aromatic sidewalls and sulfonate solubilizing groups were prepared and studied. The inherent solubilities of M2C2 (68 mm) and M2C4 (196 mm) are higher than the analogue with a (CH2)3 linker (M2, 14 mm) studied previously. 1H NMR dilution experiments show that M2C2 and M2C4 do not self‐associate in water, which enables their use as solubilizing excipients. We used phase solubility diagrams (PSDs) to compare the solubilizing capacities of M2, M2C2, M2C4, hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD), and sulfobutylether‐β‐cyclodextrin (SBE‐β‐CD) toward 15 insoluble drugs. We found that M2C2 and M2C4—as gauged by the slope of their PSDs—are less potent solubilizing agents than M2. However, the higher inherent solubility of M2C2 allows higher concentrations of drug to be formulated using M2C2 than with M2 in several cases. The solubilizing ability of M2C2 and SBE‐β‐CD were similar in many cases, with Krel values averaging 23 and 12, respectively, relative to HP‐β‐CD. In vitro cytotoxicity and in vivo maximum tolerated dose studies document the biocompatibility of M2C2.

[1]  S. Samanta,et al.  Acyclic Cucurbit[n]uril-Type Molecular Container Enables Systemic Delivery of Effective Doses of Albendazole for Treatment of SK-OV-3 Xenograft Tumors. , 2016, Molecular pharmaceutics.

[2]  C. Ayata,et al.  Comparative Effectiveness of Calabadion and Sugammadex to Reverse Non-depolarizing Neuromuscular-blocking Agents , 2015, Anesthesiology.

[3]  Kimoon Kim,et al.  Can we beat the biotin-avidin pair?: cucurbit[7]uril-based ultrahigh affinity host-guest complexes and their applications. , 2015, Chemical Society reviews.

[4]  Oren A Scherman,et al.  Cucurbituril-Based Molecular Recognition. , 2015, Chemical reviews.

[5]  Xue Yang,et al.  Supramolecular Inhibition of Neurodegeneration by a Synthetic Receptor. , 2015, ACS medicinal chemistry letters.

[6]  Euan R. Kay,et al.  Die Evolution molekularer Maschinen , 2015 .

[7]  E. Rosta,et al.  Turning Cucurbit[8]uril into a Supramolecular Nanoreactor for Asymmetric Catalysis , 2015, Angewandte Chemie.

[8]  Euan R Kay,et al.  Rise of the Molecular Machines , 2015, Angewandte Chemie.

[9]  Shengke Li,et al.  In vivo reversal of general anesthesia by cucurbit[7]uril with zebrafish models , 2015 .

[10]  Nam Ki Lee,et al.  High Affinity Host-Guest FRET Pair for Single-Vesicle Content-Mixing Assay: Observation of Flickering Fusion Events. , 2015, Journal of the American Chemical Society.

[11]  Lyle Isaacs,et al.  Acyclic cucurbit[n]uril-type molecular containers: influence of glycoluril oligomer length on their function as solubilizing agents. , 2015, Organic & biomolecular chemistry.

[12]  Lei You,et al.  Recent Advances in Supramolecular Analytical Chemistry Using Optical Sensing. , 2015, Chemical reviews.

[13]  J. Badjić,et al.  Gated molecular baskets. , 2015, Chemical Society reviews.

[14]  J. Rebek,et al.  Soft templates in encapsulation complexes. , 2015, Chemical Society reviews.

[15]  J. Nitschke,et al.  Molecular containers in complex chemical systems. , 2015, Chemical Society reviews.

[16]  Alexandros Koutsioubas,et al.  Multifunctional supramolecular polymer networks as next-generation consolidants for archaeological wood conservation , 2014, Proceedings of the National Academy of Sciences.

[17]  Lyle Isaacs,et al.  Acyclic Cucurbit[n]uril-type Molecular Containers: Influence of Aromatic Walls on their Function as Solubilizing Excipients for Insoluble Drugs , 2014, Journal of medicinal chemistry.

[18]  H. Schneider,et al.  Neues zum hydrophoben Effekt – Studien mit supramolekularen Komplexen zeigen hochenergetisches Wasser als nichtkovalente Bindungstriebkraft , 2014 .

[19]  Hans-Jörg Schneider,et al.  The hydrophobic effect revisited--studies with supramolecular complexes imply high-energy water as a noncovalent driving force. , 2014, Angewandte Chemie.

[20]  Lyle Isaacs,et al.  Stimuli Responsive Systems Constructed Using Cucurbit[n]uril-Type Molecular Containers , 2014, Accounts of chemical research.

[21]  Mathias Winterhalter,et al.  Chemosensing ensembles for monitoring biomembrane transport in real time. , 2014, Angewandte Chemie.

[22]  Werner M. Nau,et al.  Chemosensorische Ensembles zur Echtzeitdetektion von Transportprozessen durch Biomembranen , 2014 .

[23]  J. C. Barnes,et al.  Induced-fit catalysis of corannulene bowl-to-bowl inversion. , 2014, Nature chemistry.

[24]  Liping Cao,et al.  Cucurbit[7]uril⋅guest pair with an attomolar dissociation constant. , 2014, Angewandte Chemie.

[25]  L. Isaacs,et al.  Cucurbit[7]uril containers for targeted delivery of oxaliplatin to cancer cells. , 2013, Angewandte Chemie.

[26]  C. Ayata,et al.  Calabadion: A New Agent to Reverse the Effects of Benzylisoquinoline and Steroidal Neuromuscular-blocking Agents , 2013, Anesthesiology.

[27]  B. Gibb,et al.  Guest packing motifs within a supramolecular nanocapsule and a covalent analogue. , 2013, Journal of the American Chemical Society.

[28]  M. Merkx,et al.  Supramolecular control of enzyme activity through cucurbit[8]uril-mediated dimerization. , 2013, Angewandte Chemie.

[29]  J. C. Barnes,et al.  ExBox: a polycyclic aromatic hydrocarbon scavenger. , 2013, Journal of the American Chemical Society.

[30]  Matthias Eikermann,et al.  Acyclic cucurbit[n]uril-type molecular containers bind neuromuscular blocking agents in vitro and reverse neuromuscular block in vivo. , 2012, Angewandte Chemie.

[31]  R. Raghunathan,et al.  From containers to catalysts: supramolecular catalysis within cucurbiturils. , 2012, Chemistry.

[32]  Oren A Scherman,et al.  Release of high-energy water as an essential driving force for the high-affinity binding of cucurbit[n]urils. , 2012, Journal of the American Chemical Society.

[33]  P. Richardson,et al.  Dual Inhibition of Canonical and Noncanonical NF-κB Pathways Demonstrates Significant Antitumor Activities in Multiple Myeloma , 2012, Clinical Cancer Research.

[34]  W. Nau,et al.  The strategic use of supramolecular pK(a) shifts to enhance the bioavailability of drugs. , 2012, Advanced drug delivery reviews.

[35]  Yong Yang,et al.  Pillararenes, a new class of macrocycles for supramolecular chemistry. , 2012, Accounts of chemical research.

[36]  Lyle Isaacs,et al.  Acyclic cucurbit[n]uril molecular containers enhance the solubility and bioactivity of poorly soluble pharmaceuticals , 2012, Nature Chemistry.

[37]  W. Nau,et al.  Supramolecular tandem enzyme assays. , 2012, Chemistry.

[38]  Jing Zhang,et al.  One-Step Fabrication of Supramolecular Microcapsules from Microfluidic Droplets , 2012, Science.

[39]  Xiaoyong Lu,et al.  Cucurbituril chemistry: a tale of supramolecular success , 2012 .

[40]  Tsuyoshi Minami,et al.  Templated synthesis of glycoluril hexamer and monofunctionalized cucurbit[6]uril derivatives. , 2011, Journal of the American Chemical Society.

[41]  T. Emge,et al.  Multicomponent assembly of cavitand-based polyacylhydrazone nanocapsules. , 2011, Chemistry.

[42]  T. Zhu,et al.  Influence of Cucurbit(n=7,8)uril on the Solubility and Stability of Chlorambucil , 2011 .

[43]  J. Atwood,et al.  Cucurbit[7]uril: an amorphous molecular material for highly selective carbon dioxide uptake. , 2011, Chemical communications.

[44]  S. Walker,et al.  The potential of cucurbit[n]urils in drug delivery , 2011 .

[45]  Michael K Gilson,et al.  New ultrahigh affinity host-guest complexes of cucurbit[7]uril with bicyclo[2.2.2]octane and adamantane guests: thermodynamic analysis and evaluation of M2 affinity calculations. , 2011, Journal of the American Chemical Society.

[46]  Lyle Isaacs,et al.  Acyclic cucurbit[n]uril congeners are high affinity hosts. , 2010, The Journal of organic chemistry.

[47]  C. Park,et al.  Facile, template-free synthesis of stimuli-responsive polymer nanocapsules for targeted drug delivery. , 2010, Angewandte Chemie.

[48]  Lyle Isaacs,et al.  Toxicology and Drug Delivery by Cucurbit[n]uril Type Molecular Containers , 2010, PloS one.

[49]  W. Nau,et al.  Toxicity of cucurbit[7]uril and cucurbit[8]uril: an exploratory in vitro and in vivo study. , 2010, Organic & biomolecular chemistry.

[50]  J. Rebek Molecular behavior in small spaces. , 2009, Accounts of chemical research.

[51]  K. Rissanen,et al.  White Phosphorus Is Air-Stable Within a Self-Assembled Tetrahedral Capsule , 2009, Science.

[52]  P. Stang,et al.  Self-organization in coordination-driven self-assembly. , 2009, Accounts of chemical research.

[53]  M. Fujita,et al.  Functional molecular flasks: new properties and reactions within discrete, self-assembled hosts. , 2009, Angewandte Chemie.

[54]  Michito Yoshizawa,et al.  Funktionale molekulare Reaktionskolben: neuartige Eigenschaften und Reaktionen in diskreten, selbstorganisierten Wirtmolekülen , 2009 .

[55]  J. Collins,et al.  Solubilisation and cytotoxicity of albendazole encapsulated in cucurbit[n]uril. , 2008, Organic & biomolecular chemistry.

[56]  P. Zavalij,et al.  Cucurbit[n]uril formation proceeds by step-growth cyclo-oligomerization. , 2008, Journal of the American Chemical Society.

[57]  Kimoon Kim,et al.  Cucurbit[6]uril: organic molecular porous material with permanent porosity, exceptional stability, and acetylene sorption properties. , 2008, Angewandte Chemie.

[58]  Yoshiaki Nakamoto,et al.  para-Bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host-guest property. , 2008, Journal of the American Chemical Society.

[59]  Abu T M Serajuddin,et al.  Salt formation to improve drug solubility. , 2007, Advanced drug delivery reviews.

[60]  V. Stella,et al.  Prodrug strategies to overcome poor water solubility. , 2007, Advanced drug delivery reviews.

[61]  D. Hauss Oral lipid-based formulations. , 2007, Advanced drug delivery reviews.

[62]  Michael D. Pluth,et al.  Acid Catalysis in Basic Solution: A Supramolecular Host Promotes Orthoformate Hydrolysis , 2007, Science.

[63]  Michael D. Pluth,et al.  Reversible guest exchange mechanisms in supramolecular host-guest assemblies. , 2006, Chemical Society reviews.

[64]  Lyle Isaacs,et al.  The cucurbit[n]uril family: prime components for self-sorting systems. , 2005, Journal of the American Chemical Society.

[65]  Cornelia M Keck,et al.  Challenges and solutions for the delivery of biotech drugs--a review of drug nanocrystal technology and lipid nanoparticles. , 2004, Journal of biotechnology.

[66]  Y. Miyahara,et al.  "Molecular" molecular sieves: lid-free decamethylcucurbit[5]uril absorbs and desorbs gases selectively. , 2002, Angewandte Chemie.

[67]  Y. Ko,et al.  A facile, stereoselective [2 + 2] photoreaction mediated by curcurbit[8]uril. , 2001, Chemical communications.

[68]  J Dressman,et al.  Improving drug solubility for oral delivery using solid dispersions. , 2000, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[69]  C. Lipinski Drug-like properties and the causes of poor solubility and poor permeability. , 2000, Journal of pharmacological and toxicological methods.

[70]  Y. Inoue,et al.  Complexation Thermodynamics of Cyclodextrins. , 1998, Chemical reviews.

[71]  Roger A. Rajewski,et al.  Cyclodextrins: Their Future in Drug Formulation and Delivery , 1997, Pharmaceutical Research.

[72]  Valentino J. Stella,et al.  The Interaction of Charged and Uncharged Drugs with Neutral (HP-β-CD) and Anionically Charged (SBE7-β-CD) β-Cyclodextrins , 1996, Pharmaceutical Research.

[73]  V. Böhmer Calixarenes, Macrocycles with (Almost) Unlimited Possibilities , 1995 .

[74]  V. Böhmer Calixarene – Makrocyclen mit (fast) unbegrenzten Möglichkeiten , 1995 .

[75]  W. L. Mock,et al.  Catalysis by cucurbituril. The significance of bound-substrate destabilization for induced triazole formation , 1989 .

[76]  Donald J. Cram,et al.  Von molekularen Wirten und Gästen sowie ihren Komplexen: Nobel-Vortrag , 1988 .

[77]  D. Cram,et al.  The design of molecular hosts, guests, and their complexes , 1988, Science.

[78]  F. Diederich,et al.  Complexation of Neutral Molecules by Cyclophane Hosts , 1988 .

[79]  François Diederich Cyclophane zur Komplexierung von Neutralmolekülen , 1988 .

[80]  W. L. Mock,et al.  Structure and selectivity in host―guest complexes of cucurbituril , 1986 .

[81]  Dobák Judit,et al.  PhD dissertation , 2011 .

[82]  J. Lehn,et al.  Supramolekulare Chemie – Moleküle, Übermoleküle und molekulare Funktionseinheiten (Nobel-Vortrag)† , 1988 .

[83]  Jean-Marie Lehn,et al.  Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture) , 1988 .