On-Line Electrocardiogram Lossless Compression Using Antidictionary Codes for a Finite Alphabet

An antidictionary is particularly useful for data compression, and on-line electrocardiogram (ECG) lossless compression algorithms using antidictionaries have been proposed. They work in real-time with constant memory and give better compression ratios than traditional lossless data compression algorithms, while they only deal with ECG data on a binary alphabet. This paper proposes on-line ECG lossless compression for a given data on a finite alphabet. The proposed algorithm gives not only better compression ratios than those algorithms but also uses less computational space than they do. Moreover, the proposed algorithm work in real-time. Its effectiveness is demonstrated by simulation results.

[1]  Alistair Moffat,et al.  Compression and Coding Algorithms , 2005, IEEE Trans. Inf. Theory.

[2]  Gonzalo Navarro,et al.  Improved antidictionary based compression , 2002, 12th International Conference of the Chilean Computer Science Society, 2002. Proceedings..

[3]  Hiroyoshi Morita,et al.  Asymptotic optimality of antidictionary codes , 2010, 2010 IEEE International Symposium on Information Theory.

[4]  M. Crochemore,et al.  On-line construction of suffix trees , 2002 .

[5]  H. Morita,et al.  On the sliding window variations of antidictionary data compression using dynamic suffix trees , 2008, 2008 International Symposium on Information Theory and Its Applications.

[6]  Hiroyoshi Morita,et al.  On the adaptive antidictionary code using minimal forbidden words with constant lengths , 2010, 2010 International Symposium On Information Theory & Its Applications.

[7]  A. Restivo,et al.  Text Compression Using Antidictionaries , 1999, ICALP.

[8]  Pll Siinksen,et al.  Control , 1999, Diabetic medicine : a journal of the British Diabetic Association.

[9]  J. Gailly The Data Compression Book , 2011 .

[10]  Dan Gusfield,et al.  Algorithms on strings , 1997 .

[11]  Gene H. Hostetter,et al.  Scan-Along Polygonal Approximation for Data Compression of Electrocardiograms , 1983, IEEE Transactions on Biomedical Engineering.

[12]  Abraham Lempel,et al.  A universal algorithm for sequential data compression , 1977, IEEE Trans. Inf. Theory.

[13]  Kingo Kobayashi,et al.  Data Compression of ECG Based on the Edit Distance Algorithms (Special Section on ECG Data Compression) , 1993 .

[14]  W. A. Coberly,et al.  ECG data compression techniques-a unified approach , 1990, IEEE Transactions on Biomedical Engineering.

[15]  Hiroyoshi Morita,et al.  On the On-line Arithmetic Coding Based on Antidictionaries with Linear Complexity , 2007, 2007 IEEE International Symposium on Information Theory.

[16]  A. Restivo,et al.  Data compression using antidictionaries , 2000, Proceedings of the IEEE.

[17]  Ota Takahiro,et al.  Adaptive Antidictionary Data Compression Using a Set of Restricted Length of Minimal Forbidden Words , 2009 .

[18]  Dan Gusfield,et al.  Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology , 1997 .

[19]  D. J. Wheeler,et al.  A Block-sorting Lossless Data Compression Algorithm , 1994 .

[20]  Chiara Epifanio,et al.  A Trie-Based Approach for Compacting Automata , 2004, CPM.

[21]  Hiroyoshi Morita,et al.  On the Construction of an Antidictionary with Linear Complexity Using the Suffix Tree , 2007, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[22]  Hiroyoshi Morita,et al.  On-line Electrocardiogram Lossless Compression Using Antidictionary-Based Methods , 2009 .

[23]  Alfred C. Weaver,et al.  Control , Analysis , and Visualization of Body Sensor Streams , 2009 .