Facile and highly efficient wet synthesis of nanocrystalline BiFeO3particles by reverse co-precipitation method

[1]  Y. Astuti,et al.  French Fries-Like Bismuth Oxide: Physicochemical Properties, Electrical Conductivity and Photocatalytic Activity , 2021, Bulletin of Chemical Reaction Engineering & Catalysis.

[2]  Li Lu,et al.  Structural phase instability, mixed-phase, and energy band gap change in BiFeO3 under lattice strain effect from first-principles investigation , 2021 .

[3]  D.V.Karpinsky,et al.  Evolution of the crystal structure and magnetic properties of Sm-doped BiFeO3 ceramics across the phase boundary region , 2020, Ceramics International.

[4]  D. Michalik,et al.  Optical properties of SrSi2O2N2:Eu2+ phosphor enhanced by the addition of carbonate or fluoride reactive agents , 2020 .

[5]  K. Ramaswamy,et al.  Optimizing phase formation of BiFeO3 and Mn-doped BiFeO3 nanoceramics via thermal treatment using citrate precursor method , 2020, SN Applied Sciences.

[6]  Ahsan Habib Munna,et al.  Structural, optical, and magnetic properties of compositionally complex bismuth ferrite (BiFeO3) , 2020, Journal of Materials Science: Materials in Electronics.

[7]  K. Mažeika,et al.  A Facile Synthesis and Characterization of Highly Crystalline Submicro-Sized BiFeO3 , 2020, Materials.

[8]  A. C. Bose,et al.  Tailoring the morphology and size of perovskite BiFeO3 nanostructures for enhanced magnetic and electrical properties , 2020 .

[9]  H. Olin,et al.  Structure, Performance, and Application of BiFeO3 Nanomaterials , 2020, Nano-Micro Letters.

[10]  Mupeng Zheng,et al.  Enhanced piezoelectric property in quenched BiFeO3-based piezoceramics: role of defects and mesophase , 2020 .

[11]  Z. Islam,et al.  Influence of Ba and Mo co-doping on the structural, electrical, magnetic and optical properties of BiFeO3 ceramics , 2020, Materials Research Express.

[12]  T. Song,et al.  Ferroelectric and Piezoelectric Properties of BiFeO3‐Based Piezoelectric Ceramics , 2020, physica status solidi (a).

[13]  M. Chowdhury,et al.  Structural and Optical Characterization of Multiferroic BiFeO3 Nanoparticles Synthesized at Different Annealing Temperatures , 2020 .

[14]  C. Costa Vera,et al.  Size-tunable fabrication of BiFeO3 nanoparticles with enhanced visible-light photocatalytic activity using a facile co-precipitation method , 2019, Materials Research Express.

[15]  X. Dong,et al.  Field cycling‐induced evolution of functional properties in bismuth samarium ferrite ceramics , 2019, Journal of The American Ceramic Society.

[16]  Xinhua Zhu,et al.  Microstructures, magnetic, and dielectric properties of Ba‐doped BiFeO 3 nanoparticles synthesized via molten salt route , 2019, Journal of the American Ceramic Society.

[17]  S. M. Masoudpanah,et al.  Photocatalytic performances of BiFeO3 powders synthesized by solution combustion method: The role of mixed fuels , 2019, Materials Chemistry and Physics.

[18]  J. Narváez,et al.  Control of Multiferroic properties in BiFeO3 nanoparticles , 2019, Scientific Reports.

[19]  M. Jin,et al.  Chemical co-precipitation synthesis and properties of pure-phase BiFeO3 , 2018, Chemical Physics Letters.

[20]  S. Wada,et al.  Influence of quenching temperature on piezoelectric and ferroelectrics properties in BaTiO3-Bi(Mg1/2Ti1/2)O3-BiFeO3 ceramics , 2018, Ceramics International.

[21]  J. Rajput,et al.  Sucrose chelated auto combustion synthesis of BiFeO3 nanoparticles: Magnetically recoverable catalyst for the one‐pot synthesis of polyhydroquinoline , 2018 .

[22]  Sarbjit Singh,et al.  Optical and Luminescence Properties of β-NaFeO2 Nanoparticles , 2018, Electronic Materials Letters.

[23]  J. Rajput,et al.  Chelation and calcination promoted preparation of perovskite-structured BiFeO3 nanoparticles: a novel magnetic catalyst for the synthesis of dihydro-2-oxypyrroles , 2018, Journal of Materials Science.

[24]  R. Fathi,et al.  The effect of calcination conditions on structural and magnetic behavior of bismuth ferrite synthesized by co-precipitation method , 2018, Journal of Materials Science: Materials in Electronics.

[25]  H. Sangian,et al.  Monitoring the Bi/Fe ratio at different pH values in BiFeO 3 nanoparticles derived by normal and reverse chemical co-precipitation: A comparative study on the purity, microstructure and magnetic properties , 2017 .

[26]  H. Sangian,et al.  REVERSE CHEMICAL CO-PRECIPITATION: AN EFFECTIVE METHOD FOR SYNTHESIS OF BIFEO3 NANOPARTICLES , 2017 .

[27]  Shenggao Wang,et al.  Effects of alkaline-earth dopants on structural, optical and magnetic properties of Bi2Fe4O9 powders , 2017, Journal of Materials Science: Materials in Electronics.

[28]  R. Mardani The synthesis of Ba2+-doped multiferroic BiFeO3 nanoparticles using co-precipitation method in the presence of various surfactants and the investigation of structural and magnetic features , 2017 .

[29]  Qingyu Xu,et al.  Enhanced ferromagnetism in BiFeO3 powders by rapid combustion of graphite powders , 2017 .

[30]  Jing Lv,et al.  Lead-free rare earth-modified BiFeO3 ceramics: Phase structure and electrical properties , 2017 .

[31]  I. A. Santos,et al.  Highly resistive fast-sintered BiFeO3 ceramics , 2016 .

[32]  M. Hobosyan,et al.  A novel nano-energetic system based on bismuth hydroxide , 2016 .

[33]  Zhiwei Wu,et al.  Synthesis of Na-doped ZnO hollow spheres with improved photocatalytic activity for hydrogen production. , 2016, Dalton transactions.

[34]  Yanmin Jia,et al.  Strong pyro-catalysis of pyroelectric BiFeO3 nanoparticles under a room-temperature cold-hot alternation. , 2016, Nanoscale.

[35]  D. Dolfi,et al.  Large elasto-optic effect and reversible electrochromism in multiferroic BiFeO3 , 2016, Nature Communications.

[36]  Md. Fakhrul Islam,et al.  A soft chemical route to the synthesis of BiFeO3 nanoparticles with enhanced magnetization , 2016 .

[37]  V. Nagarajan,et al.  A multiferroic on the brink: Uncovering the nuances of strain-induced transitions in BiFeO3 , 2015, 1512.05835.

[38]  A. Salleo,et al.  Multi-phase microstructures drive exciton dissociation in neat semicrystalline polymeric semiconductors , 2015 .

[39]  J. Kim,et al.  Structural, electrical and multiferroic properties of La-doped mullite Bi2Fe4O9 thin films , 2015 .

[40]  Jing Lv,et al.  Enhanced Electrical Properties of Quenched (1 – x)Bi1–ySmyFeO3–xBiScO3 Lead-Free Ceramics , 2015 .

[41]  Valsala Kurusingal,et al.  Robust polarization and strain behavior of sm-modified BiFeO3 piezoelectric ceramics , 2015, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[42]  Zhi-guo Liu,et al.  The development of BiFeO3-based ceramics , 2014 .

[43]  B. Hilczer,et al.  Magnetic Properties of Bismuth Ferrite Nanopowder Obtained by Mechanochemical Synthesis , 2014, 1407.4657.

[44]  Zhi-guo Liu,et al.  Molten Salt Synthesis of Bismuth Ferrite Nano‐ and Microcrystals and their Structural Characterization , 2014 .

[45]  Chunxue Hao,et al.  Photocatalytic performances of BiFeO3 particles with the average size in nanometer, submicrometer, and micrometer , 2014 .

[46]  A. Ataie,et al.  Synthesis of Nanostructured Bismuth Ferrite by Mechano-Thermal Route , 2013 .

[47]  F. Min,et al.  Low-temperature synthesis of single-crystalline BiFeO3 using molten KCl–KBr salt , 2013 .

[48]  I. Betancourt,et al.  Easy synthesis of high-purity BiFeO3 nanoparticles: new insights derived from the structural, optical, and magnetic characterization. , 2013, Inorganic chemistry.

[49]  S. Balakumar,et al.  Annealing temperature mediated physical properties of bismuth ferrite (BiFeO3) nanostructures synthesized by a novel wet chemical method , 2013 .

[50]  Jinbao Xu,et al.  Bi2Fe4O9 submicron-rods synthesized by a low-heating temperature solid state precursor method , 2013 .

[51]  H. Shokrollahi Magnetic, electrical and structural characterization of BiFeO3 nanoparticles synthesized by co-precipitation , 2013 .

[52]  Jingsheng Chen,et al.  Synthesis of BiFeO3 nanoparticles with small size , 2012, Journal of Sol-Gel Science and Technology.

[53]  Zhuo Xu,et al.  Structure evolution and photocatalytic activity of BiFeO3 powders synthesized by hydrothermal decomposition of metal-EDTA complexes , 2012, Journal of Materials Science: Materials in Electronics.

[54]  Zhi-guo Liu,et al.  Multiferroic properties of Bi1−xDyxFeO3(x = 0–0.2) ceramics at various temperatures , 2012 .

[55]  P. Chen,et al.  Synthesis and dielectric properties of BiFeO3 derived from molten salt method , 2012, Journal of Materials Science: Materials in Electronics.

[56]  M. Anis-Ur-Rehman,et al.  Phase pure synthesis of BiFeO3 nanopowders using diverse precursor via co-precipitation method , 2011 .

[57]  Yu Zhou,et al.  Factors controlling pure-phase multiferroic BiFeO3 powders synthesized by chemical co-precipitation , 2011 .

[58]  M. Kosec,et al.  Strong ferroelectric domain-wall pinning in BiFeO3 ceramics , 2010 .

[59]  B. Ploss,et al.  Pyroelectric properties of BiFeO3 ceramics prepared by a modified solid-state-reaction method , 2010 .

[60]  Guoqiang Tan,et al.  Co-Precipitation Synthesis of BiFeO3 Powders , 2010 .

[61]  E. Ressouche,et al.  Phonon and magnon scattering of antiferromagneticBi2Fe4O9 , 2010 .

[62]  L. Gao,et al.  Synthesis of pure phase BiFeO3 powders in molten alkali metal nitrates , 2009 .

[63]  Guoqiang Tan,et al.  Co-precipitation/hydrothermal synthesis of BiFeO3 powder , 2008 .

[64]  A. A. Coelho,et al.  Structural, microstructural and magnetic investigations in high-energy ball milled BiFeO3 and Bi0.95Eu0.05FeO3 powders , 2008 .

[65]  T. Grande,et al.  Synthesis of BiFeO3 by Wet Chemical Methods , 2007 .

[66]  S. Or,et al.  Structural transformation and ferroelectric–paraelectric phase transition in Bi1−x Lax FeO3 (x = 0–0.25) multiferroic ceramics , 2007 .

[67]  I. Szafraniak,et al.  Characterization of BiFeO3 nanopowder obtained by mechanochemical synthesis , 2007 .

[68]  K. Částková,et al.  Microwave-assisted synthesis of bismuth oxide , 2007 .

[69]  Z. Meng,et al.  Hydrothermal synthesis of perovskite bismuth ferrite crystallites , 2006 .

[70]  S. Or,et al.  Preparation and multi-properties of insulated single-phase BiFeO3 ceramics , 2006 .

[71]  B. Toby R factors in Rietveld analysis: How good is good enough? , 2006, Powder Diffraction.

[72]  S. Or,et al.  Enhanced piezoelectric and pyroelectric effects in single-phase multiferroic Bi1−xNdxFeO3 (x=0–0.15) ceramics , 2006 .

[73]  A. Sen,et al.  Low temperature synthesis of bismuth ferrite nanoparticles by a ferrioxalate precursor method , 2005 .

[74]  S. Dhage,et al.  Synthesis of bismuth oxide nanoparticles at 100 °C , 2005 .

[75]  A. Sen,et al.  Low‐Temperature Synthesis of Nanosized Bismuth Ferrite by Soft Chemical Route , 2005 .

[76]  E. Ła̧giewka,et al.  Crystallite size and lattice strain in nanocrystalline Ni-Mo alloys studied by Rietveld refinement , 2004 .

[77]  Jean-Joseph Max,et al.  Infrared Spectroscopy of Aqueous Carboxylic Acids: Comparison between Different Acids and Their Salts , 2004 .

[78]  Zu-liang Liu,et al.  Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering , 2004 .

[79]  N. Koga,et al.  A kinetic study of the thermal decomposition of iron(III) hydroxide oxides. Part 1. α-FeO(OH) in banded iron formations , 1995 .

[80]  F. Hardcastle,et al.  The molecular structure of bismuth oxide by Raman spectroscopy , 1992 .

[81]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .

[82]  Robert Gerson,et al.  The atomic structure of BiFeO3 , 1969 .

[83]  H. Rietveld Line profiles of neutron powder-diffraction peaks for structure refinement , 1967 .