Enhancement of n-decane hydroxylation activity of Monilliera sp. NAP 00702 in a liquid–liquid interface bioreactor by mixing of anion-exchange resin microparticles

[1]  S. Oda,et al.  Derepression of carbon catabolite repression in an extractive liquid-surface immobilization (Ext-LSI) system. , 2012, Journal of bioscience and bioengineering.

[2]  S. Oda,et al.  Synthesis of (-)-β-caryophyllene oxide via regio- and stereoselective endocyclic epoxidation of β-caryophyllene with Nemania aenea SF 10099-1 in a liquid-liquid interface bioreactor (L-L IBR). , 2011, Journal of bioscience and bioengineering.

[3]  S. Oda,et al.  Efficient hydrolytic reaction of an acetate ester with fungal lipase in a liquid-liquid interface bioreactor (L-L IBR) using CaCO₃-coated ballooned microsphere. , 2011, Journal of bioscience and bioengineering.

[4]  K. Ozeki,et al.  Production of β-glucosidase by a transformant of Aspergillus oryzae RIB40 in a liquid-surface immobilization (LSI) system , 2011 .

[5]  S. Oda,et al.  Production of Xylanase with a transformant of Aspergillus oryzae RIB40 in a Liquid-Surface Immobilization (LSI) System. , 2010, Journal of bioscience and bioengineering.

[6]  K. Isshiki,et al.  Production of 6-pentyl-α-pyrone with Trichoderma atroviride and its mutant in a novel extractive liquid-surface immobilization (Ext-LSI) system , 2009 .

[7]  K. Isshiki,et al.  Regio- and Stereoselective Subterminal Hydroxylations of n-Decane by Fungi in a Liquid-Liquid Interface Bioreactor (L-L IBR) , 2009 .

[8]  K. Isshiki,et al.  Asymmetric Reduction of Benzil to (S)-Benzoin with Penicillium claviforme IAM 7294 in a Liquid-Liquid Interface Bioreactor (L-L IBR) , 2008, Bioscience, biotechnology, and biochemistry.

[9]  K. Isshiki,et al.  Liquid-surface immobilization system and liquid–liquid interface bioreactor: Application to fungal hydrolysis , 2007 .

[10]  T. Yew,et al.  Polyacrylonitrile as a gate dielectric material , 2007 .

[11]  Wei Liao,et al.  Studying pellet formation of a filamentous fungus Rhizopus oryzae to enhance organic acid production , 2007, Applied biochemistry and biotechnology.

[12]  E. Galindo,et al.  Rhizoctonia solani, an elicitor of 6-pentyl-α-pyrone production by Trichoderma harzianum in a two liquid phases, extractive fermentation system , 2004, Biotechnology Letters.

[13]  Ana Irene Nápoles Solenzal,et al.  Detoxification of sugarcane bagasse hemicellulosic hydrolysate with ion-exchange resins for xylitol production by calcium alginate-entrapped cells , 2004 .

[14]  Bing-Lan Liu,et al.  Effect of fungal pellet size on the high yield production of destruxin B by Metarhizium anisopliae , 2004 .

[15]  P. Ellaiah,et al.  Optimization of process parameters for cephalosporin C production under solid state fermentation from Acremonium chrysogenum , 2003 .

[16]  D. Gokhale,et al.  Production of acidic lipase by Aspergillus niger in solid state fermentation , 2002 .

[17]  G. Pastore,et al.  Production of coconut aroma by fungi cultivation in solid-state fermentation , 2002 .

[18]  H. Ohta,et al.  Interface Bioreactor: Microbial Transformation Device on an Interface Between a Hydrophilic Carrier and a Hydrophobic Organic Solvent , 2001 .

[19]  R. Peralta,et al.  Effect of easily metabolizable sugars in the production of xylanase by Aspergillus tamarii in solid-state fermentation , 2001 .

[20]  Peter J. Halling,et al.  Enzymes in nonaqueous solvents : methods and protocols , 2001 .

[21]  Cristóbal N. Aguilar,et al.  Induction and repression patterns of fungal tannase in solid-state and submerged cultures , 2001 .

[22]  W. Jianlong,et al.  Production of citric acid from molasses integrated with in-situ product separation by ion-exchange resin adsorption , 2000 .

[23]  Mark R. Marten,et al.  Fungal morphology and fragmentation behavior in a fed-batch Aspergillus oryzae fermentation at the production scale. , 2000, Biotechnology and bioengineering.

[24]  T. Gu,et al.  Increased Heterologous Protein Production in Aspergillusniger Fermentation through Extracellular Proteases Inhibition by Pelleted Growth , 2000, Biotechnology progress.

[25]  S. R. Parker,et al.  Biological Activity of 6-Pentyl-2H-pyran-2-one and Its Analogs , 1997 .

[26]  H. Ohta,et al.  Microbial Transformation on Interface between Hydrophilic Carriers and Hydrophobic Organic Solvents , 1992 .

[27]  H. Ohta,et al.  Alleviation of Toxicity of Poisonous Organic Compounds on Hydrophilic Carrier/Hydrophobic Organic Solvent Interface , 1992 .

[28]  N. Karanth,et al.  Production of 6‐pentyl‐α‐pyrone by Trichoderma viride , 1992 .

[29]  H. Cutler,et al.  6-Pentyl-α-pyrone from Trichoderma harzianum: its plant growth inhibitory and antimicrobial properties , 1986 .

[30]  Y. Sakurai,et al.  Growth and Respiratory Activity of Aspergillus oryzae Grown on Solid State Medium , 1985 .

[31]  R. Hattori Growth and spore formation of Bacillus subtilis adsorbed on an anion-exchange resin. , 1976 .

[32]  R. Hattori GROWTH OF ESCHERICHIA COLI ON THE SURFACE OF AN ANION-EXCHANGE RESIN IN CONTINUOUS FLOW SYSTEM , 1972 .

[33]  T. Hattori,et al.  GROWTH OF BACTERIA ON THE SURFACE OF ANION-EXCHANGE RESIN:II. ELECTRON MICROSCOPIC OBSERVATION OF ADSORBED CELLS GROWING ON RESIN SURFACE BY CARBON REPLICA METHOD , 1972 .

[34]  J. Allen,et al.  Oxidation of n-Tetradecane and 1-Tetradecene by Fungi , 1970, Journal of bacteriology.

[35]  A. J. Markovetz,et al.  Subterminal Oxidation of Aliphatic Hydrocarbons , 1970, Journal of bacteriology.

[36]  D. Klein,et al.  Role of Alcoholic Intermediates in Formation of Isomeric Ketones From n-Hexadecane by a Soil Arthrobacter , 1969, Applied microbiology.

[37]  R. L. Raymond,et al.  Microbial hydrocarbon co-oxidation. II. Use of ion-exchange resins. , 1969, Applied microbiology.