Nanoporous carbon tubes from fullerene crystals as the π-electron carbon source.

Here we report the thermal conversion of one-dimensional (1D) fullerene (C60) single-crystal nanorods and nanotubes to nanoporous carbon materials with retention of the initial 1D morphology. The 1D C60 crystals are heated directly at very high temperature (up to 2000 °C) in vacuum, yielding a new family of nanoporous carbons having π-electron conjugation within the sp(2)-carbon robust frameworks. These new nanoporous carbon materials show excellent electrochemical capacitance and superior sensing properties for aromatic compounds compared to commercial activated carbons.

[1]  Marappan Sathish,et al.  Nanoporous Fullerene Nanowhiskers , 2007 .

[2]  K. Miyazawa,et al.  Solvated structure of C60 nanowhiskers , 2005 .

[3]  Yi Luo,et al.  Photoassisted magnetization of fullerene C60 with magnetic-field trapped Raman scattering. , 2012, Journal of the American Chemical Society.

[4]  Y. Murata,et al.  Encapsulation of Molecular Hydrogen in Fullerene C60 by Organic Synthesis , 2005, Science.

[5]  Y. Saito,et al.  Structures and field emission properties of heat-treated C60 fullerene nanowhiskers , 2012 .

[6]  N. Shimodaira,et al.  Raman spectroscopic investigations of activated carbon materials , 2002 .

[7]  Seung M. Oh,et al.  Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors , 1999 .

[8]  E. Nakamura,et al.  Nanometer-sized fluorous fullerene vesicles in water and on solid surfaces. , 2010, Angewandte Chemie.

[9]  T. Suga,et al.  Structural investigation of heat-treated fullerene nanotubes and nanowhiskers , 2006 .

[10]  A. B. Fuertes,et al.  Graphitic mesoporous carbons synthesised through mesostructured silica templates , 2004 .

[11]  R. Ruoff,et al.  Carbon-Based Supercapacitors Produced by Activation of Graphene , 2011, Science.

[12]  A. B. Fuertes,et al.  Mesoporous carbons with graphitic structures fabricated by using porous silica materials as templates and iron-impregnated polypyrrole as precursor , 2005 .

[13]  H. Möhwald,et al.  Application of Inhibitor‐Loaded Halloysite Nanotubes in Active Anti‐Corrosive Coatings , 2009 .

[14]  T. Hyeon,et al.  Fabrication of New Nanoporous Carbons through Silica Templates and Their Application to the Adsorption of Bulky Dyes , 2000 .

[15]  M. Jaroniec,et al.  High temperature treatment of ordered mesoporous carbons prepared by using various carbon precursors and ordered mesoporous silica templates , 2008 .

[16]  Lili Liu,et al.  A Universal Strategy to Prepare Functional Porous Graphene Hybrid Architectures , 2014, Advanced materials.

[17]  H. Möhwald,et al.  Directed assembly of optoelectronically active alkyl-π-conjugated molecules by adding n-alkanes or π-conjugated species. , 2014, Nature chemistry.

[18]  Katsuhiko Ariga,et al.  Solvent engineering for shape-shifter pure fullerene (C60). , 2009, Journal of the American Chemical Society.

[19]  Nazario Martin,et al.  Materials for organic solar cells: the C60/pi-conjugated oligomer approach. , 2005, Chemical Society reviews.

[20]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[21]  Moumita Rana,et al.  Kinetically stabilized C60–toluene solvate nanostructures with a discrete absorption edge enabling supramolecular topotactic molecular exchange , 2014 .

[22]  Katsuhiko Ariga,et al.  Nanoarchitectonics for mesoporous materials , 2012 .

[23]  M. Dresselhaus,et al.  Raman scattering and electrical conductivity in highly disordered activated carbon fibers , 1993 .

[24]  Kun'ichi Miyazawa,et al.  C_60 Nanowhiskers Formed by the Liquid–liquid Interfacial Precipitation Method , 2002 .

[25]  Yasuo Ando,et al.  Observation of a large spin-dependent transport length in organic spin valves at room temperature , 2013, Nature Communications.

[26]  C. Liang,et al.  Mesoporous carbon materials: synthesis and modification. , 2008, Angewandte Chemie.

[27]  J. Winter,et al.  Raman Scattering in C60 fullerenes and fullerides , 1994 .

[28]  D. Zhao,et al.  A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres , 2013, Nature Communications.

[29]  Haoshen Zhou,et al.  Structure and electrical properties of heat-treated fullerene nanowhiskers as potential energy device materials , 2006 .

[30]  T. Suga,et al.  Morphology of C60 nanotubes fabricated by the liquid–liquid interfacial precipitation method , 2005 .

[31]  R. Yu,et al.  Structural evolution in the graphitization process of activated carbon by high-pressure sintering , 2009 .

[32]  Liang Jiang,et al.  Mesoporous graphitic carbon nanodisks fabricated via catalytic carbonization of coordination polymers. , 2012, Chemical communications.

[33]  Katsuhiko Ariga,et al.  Surfactant-assisted assembly of fullerene (C60) nanorods and nanotubes formed at a liquid-liquid interface. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[34]  R. Curry,et al.  Ultrahigh Performance C60 Nanorod Large Area Flexible Photoconductor Devices via Ultralow Organic and Inorganic Photodoping , 2014, Scientific Reports.

[35]  Katsuhiko Ariga,et al.  Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon. , 2012, Journal of the American Chemical Society.

[36]  Katsuhiko Ariga,et al.  Fullerene nanoarchitectonics: from zero to higher dimensions. , 2013, Chemistry, an Asian journal.

[37]  Katsuhiko Ariga,et al.  Research Update: Mesoporous sensor nanoarchitectonics , 2014 .

[38]  Y. Lvov,et al.  Clay nanotubes for corrosion inhibitor encapsulation: release control with end stoppers , 2010 .

[39]  D. Zhao,et al.  A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia3d bicontinuous cubic structure. , 2005, Journal of the American Chemical Society.

[40]  D. Dhawale,et al.  A facile photo-induced synthesis of COOH functionalized meso-macroporous carbon films and their excellent sensing capability for aromatic amines. , 2012, Chemical communications.

[41]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[42]  Y. Saito,et al.  Study on structure of heat‐treated fullerene nanowhiskers and their field electron emission characteristics , 2012 .

[43]  S. Dai,et al.  Mesoporöse Kohlenstoffmaterialien: Synthese und Modifizierung , 2008 .

[44]  T. Kyotani,et al.  Preparation of a high surface area microporous carbon having the structural regularity of Y zeolite , 2000 .

[45]  S. Dou,et al.  Towards vaporized molecular discrimination: a quartz crystal microbalance (QCM) sensor system using cobalt-containing mesoporous graphitic carbon. , 2014, Chemistry, an Asian journal.

[46]  Katsuhiko Ariga,et al.  Fullerene crystals with bimodal pore architectures consisting of macropores and mesopores. , 2013, Journal of the American Chemical Society.

[47]  C. Burger,et al.  Spherical bilayer vesicles of fullerene-based surfactants in water: a laser light scattering study. , 2001, Science.

[48]  A. Fujiwara,et al.  Conductivity and field effect transistor of La2@C80 metallofullerene. , 2003, Journal of the American Chemical Society.

[49]  T. Kyotani,et al.  Formation of New Type of Porous Carbon by Carbonization in Zeolite Nanochannels , 1997 .

[50]  Y. Yamauchi,et al.  Tailored design of functional nanoporous carbon materials toward fuel cell applications , 2014 .

[51]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[52]  K. Miyazawa C70 Nanowhiskers Fabricated by Forming Liquid/Liquid Interfaces in the Systems of Toluene Solution of C70 and Isopropyl Alcohol , 2004 .

[53]  Woo-Sik Kim,et al.  Synthesis and Characterization of Various-Shaped C60 Microcrystals Using Alcohols As Antisolvents , 2010 .

[54]  Zhiqiang Niu,et al.  All‐Solid‐State Flexible Ultrathin Micro‐Supercapacitors Based on Graphene , 2013, Advanced materials.

[55]  Katsuhiko Ariga,et al.  Alcohol-induced decomposition of Olmstead's crystalline Ag(I)-fullerene heteronanostructure yields 'bucky cubes'† , 2013 .

[56]  Katsuhiko Ariga,et al.  Bioactive nanocarbon assemblies: Nanoarchitectonics and applications , 2014 .

[57]  Lili Liu,et al.  Nanostructured Graphene Composite Papers for Highly Flexible and Foldable Supercapacitors , 2014, Advanced materials.

[58]  Robert C. Haddon,et al.  Electronic structure and bonding in icosahedral C60 , 1986 .

[59]  F. Golmar,et al.  Room‐Temperature Spin Transport in C60‐Based Spin Valves , 2011, Advanced materials.

[60]  Dongyuan Zhao,et al.  Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation. , 2005, Angewandte Chemie.