Estimating surface CO 2 fluxes from space-borne CO 2 dry air mole fraction observations using an ensemble Kalman Filter

Abstract. We have developed an ensemble Kalman Filter (EnKF) to estimate 8-day regional surface fluxes of CO2 from space-borne CO2 dry-air mole fraction observations (XCO2) and evaluate the approach using a series of synthetic experiments, in preparation for data from the NASA Orbiting Carbon Observatory (OCO). The 32-day duty cycle of OCO alternates every 16 days between nadir and glint measurements of backscattered solar radiation at short-wave infrared wavelengths. The EnKF uses an ensemble of states to represent the error covariances to estimate 8-day CO2 surface fluxes over 144 geographical regions. We use a 12×8-day lag window, recognising that XCO2 measurements include surface flux information from prior time windows. The observation operator that relates surface CO2 fluxes to atmospheric distributions of XCO2 includes: a) the GEOS-Chem transport model that relates surface fluxes to global 3-D distributions of CO2 concentrations, which are sampled at the time and location of OCO measurements that are cloud-free and have aerosol optical depths

[1]  Yasuhiro Sasano,et al.  An evaluation of CO2 observations with Solar Occultation FTS for Inclined-Orbit Satellite sensor for surface source inversion , 2003 .

[2]  C. Sweeney,et al.  Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects , 2002 .

[3]  David Crisp,et al.  The Orbiting Carbon Observatory (OCO) mission , 2004 .

[4]  Paul S. Monks,et al.  Comparisons between SCIAMACHY atmospheric CO 2 retrieved using (FSI) WFM-DOAS to ground based FTIR data and the TM3 chemistry transport model , 2006 .

[5]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[6]  Corinne Le Quéré,et al.  Regional changes in carbon dioxide fluxes of land and oceans since 1980. , 2000, Science.

[7]  C. Miller The Orbiting Carbon Observatory (OCO) , 2005 .

[8]  M. Zupanski Maximum Likelihood Ensemble Filter: Theoretical Aspects , 2005 .

[9]  Nancy Nichols,et al.  Correlated observation errors in data assimilation , 2008 .

[10]  Philippe Bousquet,et al.  Inferring CO2 sources and sinks from satellite observations: Method and application to TOVS data , 2005 .

[11]  S. Julier,et al.  Which Is Better, an Ensemble of Positive–Negative Pairs or a Centered Spherical Simplex Ensemble? , 2004 .

[12]  Nancy Nichols,et al.  Unbiased ensemble square root filters , 2007 .

[13]  Ilse Aben,et al.  Evidence of systematic errors in SCIAMACHY-observed CO 2 due to aerosols , 2005 .

[14]  Ankur R. Desai,et al.  Assessing the near surface sensitivity of SCIAMACHY atmospheric CO 2 retrieved using (FSI) WFM-DOAS , 2007 .

[15]  Richard J. Engelen,et al.  Comparing CO2 retrieved from atmospheric infrared sounder with model predictions: implications for constraining surface fluxes and lower-to-upper troposphere transport , 2006 .

[16]  David Livings Aspects of the Ensemble Kalman Filter , 2005 .

[17]  M. Buchwitz,et al.  SCIAMACHY: Mission Objectives and Measurement Modes , 1999 .

[18]  Dusanka Zupanski,et al.  An ensemble data assimilation system to estimate CO2 surface fluxes from atmospheric trace gas observations , 2005 .

[19]  Scott C. Doney,et al.  Variational data assimilation for atmospheric CO2 , 2006 .

[20]  Failure to Launch: Why Do Some Social Issues Fail to Detonate Moral Panics? , 2009 .

[21]  J. Randerson,et al.  Terrestrial ecosystem production: A process model based on global satellite and surface data , 1993 .

[22]  P. Houtekamer,et al.  Data Assimilation Using an Ensemble Kalman Filter Technique , 1998 .

[23]  David G. Streets,et al.  Using CO2:CO Correlations to Improve Inverse Analyses of Carbon Fluxes , 2006 .

[24]  Christopher B. Field,et al.  The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide , 1997 .

[25]  Jennifer A. Logan,et al.  An assessment of biofuel use and burning of agricultural waste in the developing world , 2003 .

[26]  J. Whitaker,et al.  Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter , 2001 .

[27]  Robert Atlas,et al.  Atmospheric Observations and Experiments to Assess Their Usefulness in Data Assimilation , 1997 .

[28]  Kevin R. Gurney,et al.  TransCom 3 CO2 inversion intercomparison: 2. Sensitivity of annual mean results to data choices , 2003 .

[29]  Wouter Peters,et al.  An improved Kalman Smoother for atmospheric inversions , 2005 .

[30]  Sander Houweling,et al.  CO 2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport , 2003 .

[31]  Shamil Maksyutov,et al.  Projected Impact of the GOSAT Observations on Regional CO2 Flux Estimations as a Function of Total Retrieval Error , 2008 .

[32]  Andrew C. Lorenc,et al.  The potential of the ensemble Kalman filter for NWP—a comparison with 4D‐Var , 2003 .

[33]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[34]  David J. Lary,et al.  An observing system simulation experiment to evaluate the scientific merit of wind and ozone measurements from the future SWIFT instrument , 2005 .

[35]  David Crisp,et al.  Precision requirements for space-based XCO2 data , 2007 .

[36]  P. Palmer,et al.  Interpreting the variability of space-borne CO 2 column-averaged volume mixing ratios over North America using a chemistry transport model , 2008 .

[37]  Michael Buchwitz,et al.  Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite – Part 1: Carbon dioxide , 2008 .

[38]  P. Ciais,et al.  Influence of transport uncertainty on annual mean and seasonal inversions of atmospheric CO2 data , 2002 .

[39]  Thomas Kaminski,et al.  Inverse modeling of methane sources and sinks using the adjoint of a global transport model , 1999 .

[40]  J. Randerson,et al.  Influence of reduced carbon emissions and oxidation on the distribution of atmospheric CO2: Implications for inversion analyses , 2005 .

[41]  Craig H. Bishop,et al.  Adaptive sampling with the ensemble transform Kalman filter , 2001 .

[42]  Hartmut Boesch,et al.  Orbiting Carbon Observatory: Inverse method and prospective error analysis , 2008 .

[43]  Taro Takahashi,et al.  Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models , 2002, Nature.

[44]  François-Marie Bréon,et al.  Contribution of the Orbiting Carbon Observatory to the estimation of CO2 sources and sinks: Theoretical study in a variational data assimilation framework , 2007 .

[45]  P. Palmer,et al.  Atmospheric science: Failure to launch , 2009 .

[46]  Martin Ehrendorfer,et al.  A review of issues in ensemble-based Kalman filtering , 2007 .

[47]  Rachel M. Law,et al.  Global observations of the carbon budget 3. Initial assessment of the impact of satellite orbit, scan geometry, and cloud on measuring CO2 from space , 2002 .

[48]  J. Randerson,et al.  Interannual variability in global biomass burning emissions from 1997 to 2004 , 2006 .

[49]  Frédéric Chevallier,et al.  Impact of correlated observation errors on inverted CO2 surface fluxes from OCO measurements , 2007 .