New Hamiltonians for loop quantum cosmology with arbitrary spin representations

In loop quantum cosmology, one has to make a choice of SU(2) irreducible representation in which to compute holonomies and regularize the curvature of the connection. The systematic choice made in the literature is to work in the fundamental representation, and very little is known about the physics associated with higher spin labels. This constitutes an ambiguity whose understanding, we believe, is fundamental for connecting loop quantum cosmology to full theories of quantum gravity like loop quantum gravity, its spin foam formulation, or cosmological group field theory. We take a step in this direction by providing here a new closed formula for the Hamiltonian of flat FLRW models regularized in a representation of arbitrary spin. This expression is furthermore polynomial in the basic variables which correspond to well-defined operators in the quantum theory, takes into account the so-called inverse-volume corrections, and treats in a unified way two different regularization schemes for the curvature. After studying the effective classical dynamics corresponding to single and multiple spin Hamiltonians, we study the behavior of the critical density when the number of representations is increased, and the stability of the difference equations in the quantum theory.

[1]  Bianca Dittrich,et al.  Towards a phase diagram for spin foams , 2016, 1612.04506.

[2]  A. Ashtekar,et al.  Phenomenology with fluctuating quantum geometries in loop quantum cosmology , 2016, 1611.09810.

[3]  A. Ashtekar,et al.  Quantum gravity in the sky: interplay between fundamental theory and observations , 2016, 1608.04228.

[4]  N. Bodendorfer State refinements and coarse graining in a full theory embedding of loop quantum cosmology , 2016, 1607.06227.

[5]  Steffen Gielen Emergence of a low spin phase in group field theory condensates , 2016, 1604.06023.

[6]  F. Cianfrani,et al.  Improved regularization from Quantum Reduced Loop Gravity , 2016, 1604.02375.

[7]  Sylvain Carrozza,et al.  Flowing in Group Field Theory Space: a Review , 2016, 1603.01902.

[8]  C. Beetle,et al.  Diffeomorphism invariant cosmological symmetry in full quantum gravity , 2016, 1603.01128.

[9]  L. Sindoni,et al.  Bouncing cosmologies from quantum gravity condensates , 2016, 1602.08271.

[10]  L. Sindoni,et al.  Quantum Cosmology from Group Field Theory Condensates: a Review , 2016, 1602.08104.

[11]  F. Cianfrani,et al.  Quantum Reduced Loop Gravity and the foundation of Loop Quantum Cosmology , 2016, 1602.05475.

[12]  N. Bodendorfer An embedding of loop quantum cosmology in ( b , v ) variables into a full theory context , 2015, 1512.00713.

[13]  E. Livine 3d Quantum Gravity: Coarse-Graining and q -Deformation , 2016 .

[14]  A. Ashtekar,et al.  Generalized effective description of loop quantum cosmology , 2015, 1509.08899.

[15]  I. Agulló,et al.  Detailed analysis of the predictions of loop quantum cosmology for the primordial power spectra , 2015, 1509.05693.

[16]  I. Agulló Loop quantum cosmology, non-Gaussianity, and CMB power asymmetry , 2015, 1507.04703.

[17]  F. Cianfrani,et al.  Quantum reduced loop gravity: Extension to scalar fields , 2015, 1506.08579.

[18]  F. Cianfrani,et al.  Quantum Reduced Loop Gravity: a realistic Universe , 2015, 1506.07835.

[19]  Steffen Gielen Identifying cosmological perturbations in group field theory condensates , 2015, 1505.07479.

[20]  Jakub Mielczarek,et al.  Some implications of signature-change in cosmological models of loop quantum gravity , 2015, 1503.09154.

[21]  N. Bodendorfer Quantum reduction to Bianchi I models in loop quantum gravity , 2014, 1410.5608.

[22]  Sylvain Carrozza Discrete renormalization group for SU(2) tensorial group field theory , 2014, 1407.4615.

[23]  F. Cianfrani,et al.  Loop Quantum Cosmology from Loop Quantum Gravity , 2014, 1410.4788.

[24]  Bianca Dittrich,et al.  The continuum limit of loop quantum gravity - a framework for solving the theory , 2014, 1409.1450.

[25]  D. Oriti Group Field Theory and Loop Quantum Gravity , 2014, 1408.7112.

[26]  D. Oriti,et al.  Quantum cosmology from quantum gravity condensates: cosmological variables and lattice-refined dynamics , 2014, 1407.8167.

[27]  J. Grain,et al.  Loop quantum cosmology with complex Ashtekar variables , 2014, 1407.3768.

[28]  G. Calcagni,et al.  Anomaly-free cosmological perturbations in effective canonical quantum gravity , 2014, 1404.1018.

[29]  V. Rivasseau,et al.  Renormalization of a SU(2) Tensorial Group Field Theory in Three Dimensions , 2014, Communications in Mathematical Physics.

[30]  F. Cianfrani,et al.  Quantum reduced loop gravity: Semiclassical limit , 2014, 1402.3155.

[31]  S. Steinhaus,et al.  Time evolution as refining, coarse graining and entangling , 2013, 1311.7565.

[32]  E. Livine Deformation operators of spin networks and coarse-graining , 2013, 1310.3362.

[33]  Sylvain Carrozza,et al.  Renormalization of Tensorial Group Field Theories: Abelian U(1) Models in Four Dimensions , 2012, 1207.6734.

[34]  L. Sindoni,et al.  Homogeneous cosmologies as group field theory condensates , 2013, 1311.1238.

[35]  D. Oriti Group field theory as the second quantization of loop quantum gravity , 2013, 1310.7786.

[36]  Parampreet Singh,et al.  Quantization ambiguities and bounds on geometric scalars in anisotropic loop quantum cosmology , 2013, 1310.6728.

[37]  E. Schnetter,et al.  Coarse graining of spin net models: dynamics of intertwiners , 2013, 1306.2987.

[38]  L. Sindoni,et al.  Cosmology from group field theory formalism for quantum gravity. , 2013, Physical review letters.

[39]  J. Engle Embedding loop quantum cosmology without piecewise linearity , 2013, 1301.6210.

[40]  F. Cianfrani,et al.  Quantum-Reduced Loop Gravity: Cosmology , 2013, 1301.2245.

[41]  A. Ashtekar,et al.  Extension of the quantum theory of cosmological perturbations to the Planck era , 2012, 1211.1354.

[42]  F. Cianfrani,et al.  A new perspective on cosmology in Loop Quantum Gravity , 2012, 1210.4504.

[43]  A. Ashtekar,et al.  The pre-inflationary dynamics of loop quantum cosmology: confronting quantum gravity with observations , 2012, 1302.0254.

[44]  A. Ashtekar,et al.  Quantum gravity extension of the inflationary scenario. , 2012, Physical review letters.

[45]  B. Dittrich From the discrete to the continuous: towards a cylindrically consistent dynamics , 2012, 1205.6127.

[46]  J. Lewandowski,et al.  Quantum isolated horizons and black hole entropy , 2012, 1203.0174.

[47]  A. Marchini,et al.  The picture of the Bianchi I model via gauge fixing in Loop Quantum Gravity , 2012, 1201.2588.

[48]  A. Ashtekar,et al.  Positive cosmological constant in loop quantum cosmology , 2011, 1112.0360.

[49]  F. Eckert,et al.  Coarse graining methods for spin net and spin foam models , 2011, 1109.4927.

[50]  B. Dittrich How to construct diffeomorphism symmetry on the lattice , 2012, 1201.3840.

[51]  A. Ashtekar,et al.  Loop quantum cosmology: a status report , 2011, 1108.0893.

[52]  A. Karami,et al.  Loop quantum cosmology of k=1 FRW: A tale of two bounces , 2011, 1105.3724.

[53]  Alejandro Perez,et al.  Static Isolated Horizons: SU(2) Invariant Phase Space, Quantization, and Black Hole Entropy , 2010, Entropy.

[54]  E. Wilson-Ewing,et al.  Hybrid quantization: From Bianchi I to the Gowdy model , 2010, 1006.2369.

[55]  D. Pranzetti,et al.  Black hole entropy from the SU(2)-invariant formulation of type I isolated horizons , 2010, 1006.0634.

[56]  Jonathan Engle,et al.  Black hole entropy and SU(2) Chern-Simons theory. , 2009, Physical review letters.

[57]  Dah-Wei Chiou,et al.  Loop quantum cosmology with higher order holonomy corrections , 2009, 0907.0640.

[58]  E. Wilson-Ewing Loop quantum cosmology of Bianchi type IX models , 2009, 1005.5565.

[59]  A. Ashtekar,et al.  Loop quantum cosmology of Bianchi I models , 2009, 0903.3397.

[60]  A. Ashtekar Singularity resolution in loop quantum cosmology: A brief overview , 2008, 0812.4703.

[61]  M. Szydłowski,et al.  Effects of the quantization ambiguities on the Big Bounce dynamics , 2008, 0804.2778.

[62]  E. Bentivegna,et al.  Anti-de Sitter universe dynamics in loop quantum cosmology , 2008 .

[63]  Eduardo J S Villaseñor,et al.  Black hole state counting in loop quantum gravity: a number-theoretical approach. , 2008, Physical review letters.

[64]  M. Szydłowski,et al.  Emerging singularities in the bouncing loop cosmology , 2008, 0801.1073.

[65]  Daniel R. Terno,et al.  Bulk entropy in loop quantum gravity , 2007, 0706.0985.

[66]  M. Bojowald Loop Quantum Cosmology , 2005, Living reviews in relativity.

[67]  A. Ashtekar,et al.  Robustness of key features of loop quantum cosmology , 2007, 0710.3565.

[68]  A. Ashtekar,et al.  Loop quantum cosmology of k = 1 FRW models , 2006, gr-qc/0612104.

[69]  A. Ashtekar,et al.  Quantum Nature of the Big Bang: Improved dynamics , 2006, gr-qc/0607039.

[70]  Alejandro Perez,et al.  Regularization ambiguities in loop quantum gravity , 2005, gr-qc/0509118.

[71]  Daniel R. Terno,et al.  Quantum black holes: Entropy and entanglement on the horizon , 2005, gr-qc/0508085.

[72]  Uniwersytet Warszawski,et al.  Closed FRW model in Loop Quantum Cosmology , 2006 .

[73]  K. Vandersloot Hamiltonian constraint of loop quantum cosmology , 2005, gr-qc/0502082.

[74]  K. Meissner Black-hole entropy in loop quantum gravity , 2004, gr-qc/0407052.

[75]  A. Ashtekar,et al.  Background independent quantum gravity: A Status report , 2004, gr-qc/0404018.

[76]  M. Bojowald,et al.  Consistency conditions for fundamentally discrete theories , 2003, gr-qc/0307083.

[77]  E. Álvarez,et al.  Quantum Gravity , 2004, gr-qc/0405107.

[78]  T. Thiemann Introduction to Modern Canonical Quantum General Relativity , 2001, gr-qc/0110034.

[79]  A. Ashtekar,et al.  Quantum geometry of isolated horizons and black hole entropy , 2000, gr-qc/0005126.