Ear skin optical clearing for improving blood flow imaging/Optisches Clearing der Ohrhaut zur verbesserten Bildgebung des Blutflusses

Abstract Background and objective: Various optical imaging techniques have shown a great potential for monitoring angiogenesis, development of blood vessels, and even tumor transfer, but they suffer from the limited imaging depth in tissue. Although the mouse ear provides an available window, the residual scattering of ear skin still influences the imaging quality. The proposed tissue optical clearing technique presents a new opportunity to decrease the scattering of skin, and enhance the imaging contrast or imaging depth of optical methods. The purpose of this study is to develop an innovative ear skin optical clearing agent (ESOCA) for improving the transparency of the mouse ear. Materials and methods: The ESOCA was topically applied on the ear skin of BALB/c mice in vivo for 5 and 10 min, respectively. Then the transmittance spectra of mice ear were measured with an optical fiber spectrometer system, and the cutaneous blood vessels and blood flow was monitored by the laser speckle contrast imaging (LSCI) technique. As a control, the measurements were also performed before application of the ESOCA. In addition, the contrast-to-noise ratio (CNR) values of speckle contrast images were calculated to evaluate the resolving ability to blood flow. Results: The transmittance of mice ear was enhanced by 111.0±8.2% at 633 nm after application of ESOCA. The cutaneous blood vessels and blood flow could be distinguished more clearly with LSCI technique. In addition, the calculated CNR values of speckle contrast images showed a great enhancement compared with the initial (control) values. Conclusion: In summary, topical application of an innovative ESOCA permits the vessel structure and flow distribution information of cutaneous blood vessels to be imaged by LSCI with higher contrast, which will be significant for tumor studies in the future. Zusammenfassung Hintergrund und Ziel: Verschiedene optische bildgebende Verfahren haben ein großes Potenzial für die Überwachung der Angiogenese, der Entwicklung von Blutgefäßen und sogar der Tumorausbreitung gezeigt, leiden aber unter der eingeschränkten Bildtiefe im Gewebe. Das Mausohr bietet modellhaft betrachtet ein optisches Fenster, jedoch wird die Bildqualität durch die restliche Streuung der Ohrhaut beeinflusst. Die vorgeschlagene gewebeoptische Clearing-Technik stellt eine neue Möglichkeit dar, die Streuung der Haut zu verringern und Bildkontrast und Bildtiefe optischer Verfahren zu verbessern. Das Ziel dieser Studie ist es, ein innovatives Hautclearing-Agent (ear skin optical clearing agent, ESOCA) zur Verbesserung der Transparenz des Mausohrs zu entwickeln. Materialien und Methoden: Das ESOCA wurde in vivo für jeweils 5 und 10 min topisch auf die Ohrhaut von BALB/c-Mäusen aufgetragen. Dann wurden am Mausohr die Transmissionsspektren mit einem optischen Faserspektrometer gemessen und die kutanen Blutgefäße und der Blutfluss mittels Laser-Speckle-Kontrastdarstellung (laser speckle contrast imaging, LSCI) überwacht. Als Kontrolle wurden die Messungen auch vor dem Aufbringen des ESOCA durchgeführt. Zusätzlich wurde das Kontrast-Rausch-Verhältnis (contrast-to-noise ratio, CNR) der Speckle-Kontrastbilder berechnet, um das Auflösungsvermögen in der Darstellung des Blutflusses zu evaluieren. Ergebnisse: Die Durchlässigkeit der Ohrhaut von Mäusen wurde nach Anwendung des ESOCA und bei einer Wellenlänge von λ=633 nm um 111,0±8,2% erhöht. Die kutanen Blutgefäße und der Blutfluss konnten mit der LSCI-Technik deutlich unterschieden werden. Darüber hinaus zeigten die berechneten CNR-Werte eine große Verbesserung im Vergleich zu den eingangs durchgeführten Kontrollmessungen (ohne ESOCA). Fazit: Die topische Anwendung des innovativen ESOCA erlaubt eine kontrastreichere Darstellung der Gefäßstruktur und der Strömungsverteilung von kutanen Blutgefäßen mittels LSCI-Technik. Dies könnte zukünftig von entscheidender Bedeutung für Tumorstudien sein.

[1]  Valery V. Tuchin,et al.  Optical Clearing of Tissues and Blood , 2005 .

[2]  Benjamin J Vakoc,et al.  Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging , 2009, Nature Medicine.

[3]  Jongbum Seo,et al.  A physical method to enhance transdermal delivery of a tissue optical clearing agent: Combination of microneedling and sonophoresis , 2010, Lasers in surgery and medicine.

[4]  R. Weissleder Molecular Imaging in Cancer , 2006, Science.

[5]  N. Thakor,et al.  Contrast-enhanced imaging of cerebral vasculature with laser speckle. , 2007, Applied optics.

[6]  C McEwen,et al.  Capillaroscopic observations in rheumatic diseases. , 1970, Annals of the rheumatic diseases.

[7]  Ying Zheng,et al.  ESTABLISHMENT OF VISIBLE ANIMAL METASTASIS MODELS FOR HUMAN NASOPHARYNGEAL CARCINOMA BASED ON A FAR-RED FLUORESCENT PROTEIN , 2012 .

[8]  Shaoqun Zeng,et al.  Hyperosmotic chemical agent's effect on in vivo cerebral blood flow revealed by laser speckle. , 2004, Applied optics.

[9]  Valery V. Tuchin,et al.  Light propagation in tissues with controlled optical properties , 1996, European Conference on Biomedical Optics.

[10]  M. Menger,et al.  In vitro and in vivo approaches to study angiogenesis in the pathophysiology and therapy of endometriosis. , 2007, Human reproduction update.

[11]  Atsushi Miyawaki,et al.  Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain , 2011, Nature Neuroscience.

[12]  Qingming Luo,et al.  Short-term and long-term effects of optical clearing agents on blood vessels in chick chorioallantoic membrane. , 2008, Journal of biomedical optics.

[13]  Dan Zhu,et al.  Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging. , 2012, Journal of biomedical optics.

[14]  B. Tromberg,et al.  PROBING THE IMPACT OF GAMMA-IRRADIATION ON THE METABOLIC STATE OF NEURAL STEM AND PRECURSOR CELLS USING DUAL-WAVELENGTH INTRINSIC SIGNAL TWO-PHOTON EXCITED FLUORESCENCE. , 2011, Journal of innovative optical health sciences.

[15]  Valery V Tuchin,et al.  In vivo fiber‐based multicolor photoacoustic detection and photothermal purging of metastasis in sentinel lymph nodes targeted by nanoparticles , 2009, Journal of biophotonics.

[16]  How Yong Ng,et al.  Concentration of brine by forward osmosis: Performance and influence of membrane structure , 2008 .

[17]  A. Gaumann,et al.  Intravital microscopy of tumor angiogenesis and regression in the dorsal skin fold chamber: mechanistic insights and preclinical testing of therapeutic strategies , 2009, Clinical & Experimental Metastasis.

[18]  Attila Tárnok,et al.  In vivo flow cytometry: A horizon of opportunities , 2011, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[19]  Qingming Luo,et al.  Skin backreflectance and microvascular system functioning at the action of osmotic agents , 2003 .

[20]  Joseph A. Izatt,et al.  Combined hyperspectral and spectral domain optical coherence tomography microscope for noninvasive hemodynamic imaging. , 2009 .

[21]  Qingming Luo,et al.  Imaging dermal blood flow through the intact rat skin with an optical clearing method. , 2010, Journal of biomedical optics.

[22]  V. Tuchin Optical immersion as a new tool for controlling the optical properties of tissues and blood , 2005 .

[23]  Gracie Vargas,et al.  Morphological Changes in Blood Vessels Produced by Hyperosmotic Agents and Measured by Optical Coherence Tomography¶ , 2003, Photochemistry and photobiology.

[24]  Li Zhang,et al.  Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging. , 2006, Optics letters.

[25]  Bernard Vandenbunder,et al.  Expression of an Ets-1 dominant-negative mutant perturbs normal and tumor angiogenesis in a mouse ear model , 2003, Oncogene.

[26]  Charles P. Lin,et al.  In vivo flow cytometer for real-time detection and quantification of circulating cells. , 2004, Optics letters.

[27]  Dan Zhu,et al.  An innovative transparent cranial window based on skull optical clearing , 2012 .

[28]  Qingming Luo,et al.  Quantitative analysis of dehydration in porcine skin for assessing mechanism of optical clearing. , 2011, Journal of biomedical optics.

[29]  Frank Bradke,et al.  Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury , 2011, Nature Medicine.

[30]  Dan Zhu,et al.  Switchable skin window induced by optical clearing method for dermal blood flow imaging , 2012, Journal of biomedical optics.

[31]  Baoci Shan,et al.  IN VIVO VALIDATION OF DUAL-MODALITY SYSTEM FOR SIMULTANEOUS POSITRON EMISSION TOMOGRAPHY AND OPTICAL TOMOGRAPHIC IMAGING , 2011 .

[32]  R. Jain,et al.  Transparent Window Models and Intravital Microscopy: Imaging Gene Expression, Physiological Function and Therapeutic Effects in Tumors , 2011 .

[33]  Qingming Luo,et al.  Enhancement of skin optical clearing efficacy using photo‐irradiation , 2010, Lasers in surgery and medicine.