Editors’ Choice—Review—Conductive Forms of MoS2 and Their Applications in Energy Storage and Conversion

[1]  C. Kuss,et al.  Review—Conducting Polymer-Based Binders for Lithium-Ion Batteries and Beyond , 2020, Journal of The Electrochemical Society.

[2]  J. Rossmeisl,et al.  Oxygen evolution reaction: a perspective on a decade of atomic scale simulations† , 2020, Chemical science.

[3]  F. Ciucci,et al.  Dual-phase MoS2 as a high-performance sodium-ion battery anode , 2020 .

[4]  Fan Yang,et al.  Improvement of HER activity for MoS2: insight into the effect and mechanism of phosphorus post-doping , 2020 .

[5]  Yingxia Yu,et al.  P-Type Doping in Large-Area Monolayer MoS2 by Chemical Vapor Deposition. , 2020, ACS applied materials & interfaces.

[6]  G. Fanchini,et al.  Solid-State Chemiresistors from Two-Dimensional MoS2 Nanosheets Functionalized with l-Cysteine for In-Line Sensing of Part-Per-Billion Cd2+ Ions in Drinking Water , 2019, ACS omega.

[7]  Kimberly M. Papadantonakis,et al.  Reductant-Activated, High-Coverage, Covalent Functionalization of 1T′-MoS2 , 2019, ACS Materials Letters.

[8]  D. Cao,et al.  Single‐Atom Ru Doping Induced Phase Transition of MoS 2 and S Vacancy for Hydrogen Evolution Reaction , 2019, Small Methods.

[9]  P. Braun,et al.  Carbon-Free, High-Capacity and Long Cycle Life 1D-2D NiMoO4 Nanowires/Metallic 1T MoS2 Composite Lithium-Ion Battery Anodes. , 2019, ACS applied materials & interfaces.

[10]  Hailiang Wang,et al.  Domino electroreduction of CO2 to methanol on a molecular catalyst , 2019, Nature.

[11]  Yi Cui,et al.  Nanowires for Electrochemical Energy Storage. , 2019, Chemical reviews.

[12]  ruihua zhou,et al.  Enhanced Electrochemical Performance of Self-Assembled Nanoflowers of MoS2 Nanosheets as Supercapacitor Electrode Materials , 2019, ACS omega.

[13]  Qu Zhou,et al.  Adsorption of H2O molecule on TM (Au, Ag) doped-MoS2 monolayer: A first-principles study , 2019, Physica E: Low-dimensional Systems and Nanostructures.

[14]  B. Hong,et al.  Defect-engineered MoS2 with extended photoluminescence lifetime for high-performance hydrogen evolution , 2019, Journal of Materials Chemistry C.

[15]  Ashutosh Kumar Singh,et al.  Vanadium doped few-layer ultrathin MoS2 nanosheets on reduced graphene oxide for high-performance hydrogen evolution reaction , 2019, RSC advances.

[16]  M. Prato,et al.  High-Yield Preparation of Exfoliated 1T-MoS2 with SERS Activity , 2019, Chemistry of Materials.

[17]  Matthew T. Darby,et al.  Engineering Monolayer 1T-MoS2 into a Bifunctional Electrocatalyst via Sonochemical Doping of Isolated Transition Metal Atoms , 2019, ACS Catalysis.

[18]  David A. Strubbe,et al.  Solid Lubrication with MoS2: A Review , 2019, Lubricants.

[19]  Seungwu Han,et al.  Unveiling Electrochemical Reaction Pathways of CO2 Reduction to CN Species at S-Vacancies of MoS2. , 2019, ChemSusChem.

[20]  Tao Chen,et al.  Heterostructure engineering of Co-doped MoS2 coupled with Mo2CTx MXene for enhanced hydrogen evolution in alkaline media. , 2019, Nanoscale.

[21]  K. Yuan,et al.  Covalent Connection of Polyaniline with MoS2 Nanosheets toward Ultrahigh Rate Capability Supercapacitors , 2019, ACS Sustainable Chemistry & Engineering.

[22]  Wenbo Song,et al.  Tailoring 2D MoS2 heterointerfaces for promising oxygen reduction reaction electrocatalysis , 2019, Journal of Materials Chemistry A.

[23]  Qing Hua Wang,et al.  Reaction Kinetics for the Covalent Functionalization of Two-Dimensional MoS2 by Aryl Diazonium Salts. , 2019, Langmuir : the ACS journal of surfaces and colloids.

[24]  Manjot Kaur,et al.  A synoptic review of MoS2: Synthesis to applications , 2019, Superlattices and Microstructures.

[25]  K. Jiang,et al.  Sub-10 nm Monolayer MoS2 Transistors Using Single-Walled Carbon Nanotubes as an Evaporating Mask. , 2019, ACS applied materials & interfaces.

[26]  Taehoon Kim,et al.  Lithium-ion batteries: outlook on present, future, and hybridized technologies , 2019, Journal of Materials Chemistry A.

[27]  Dexin Yang,et al.  Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts , 2019, Nature Communications.

[28]  Poonam,et al.  Review of supercapacitors: Materials and devices , 2019, Journal of Energy Storage.

[29]  Anh Khoa Augustin Lu,et al.  A systematic study of various 2D materials in the light of defect formation and oxidation. , 2019, Physical chemistry chemical physics : PCCP.

[30]  Wei Zhao,et al.  Structural Determination and Nonlinear Optical Properties of New 1T‴-Type MoS2 Compound. , 2019, Journal of the American Chemical Society.

[31]  T. Zhai,et al.  Doping engineering and functionalization of two-dimensional metal chalcogenides. , 2019, Nanoscale horizons.

[32]  H. Yamashita,et al.  Defect Engineering of MoS2 and Its Impacts on Electrocatalytic and Photocatalytic Behavior in Hydrogen Evolution Reactions. , 2018, Chemistry, an Asian journal.

[33]  F. Ciucci,et al.  Metallic MoS2 nanosheets: multifunctional electrocatalyst for the ORR, OER and Li-O2 batteries. , 2018, Nanoscale.

[34]  Y. Hu,et al.  Synthesis, stabilization and applications of 2-dimensional 1T metallic MoS2 , 2018 .

[35]  Meilin Liu,et al.  Construction of MoS2/C Hierarchical Tubular Heterostructures for High-Performance Sodium Ion Batteries. , 2018, ACS nano.

[36]  Wei Zhao,et al.  Metastable MoS2 : Crystal Structure, Electronic Band Structure, Synthetic Approach and Intriguing Physical Properties. , 2018, Chemistry.

[37]  C. Pham‐Huu,et al.  Surface Engineering of Chemically Exfoliated MoS2 in a “Click”: How To Generate Versatile Multifunctional Transition Metal Dichalcogenides-Based Platforms , 2018, Chemistry of Materials.

[38]  J. Xing,et al.  Stepwise Sulfurization from MoO3 to MoS2 via Chemical Vapor Deposition , 2018, ACS Applied Nano Materials.

[39]  Nan Wang,et al.  Metallic-Phase MoS2 Nanopetals with Enhanced Electrocatalytic Activity for Hydrogen Evolution , 2018, ACS Sustainable Chemistry & Engineering.

[40]  L. Zhen,et al.  Homogeneous surface oxidation and triangle patterning of monolayer MoS2 by hydrogen peroxide , 2018, Applied Surface Science.

[41]  Xiaobo Chen,et al.  Preparation of a MoS2/carbon nanotube composite as an electrode material for high-performance supercapacitors , 2018, RSC advances.

[42]  Hongli Zhu,et al.  Metallic MoS2 for High Performance Energy Storage and Energy Conversion. , 2018, Small.

[43]  Kimberly M. Papadantonakis,et al.  Reduction of Aqueous CO2 to 1-Propanol at MoS2 Electrodes , 2018, Chemistry of Materials.

[44]  Shichun Mu,et al.  Effect of microstructure on HER catalytic properties of MoS2 vertically standing nanosheets , 2018 .

[45]  A. Ciesielski,et al.  MoS2 nanosheets via electrochemical lithium-ion intercalation under ambient conditions , 2018 .

[46]  Hongli Zhu,et al.  Ion Transport Nanotube Assembled with Vertically Aligned Metallic MoS2 for High Rate Lithium‐Ion Batteries , 2018 .

[47]  C. Giorgio,et al.  Evolution of Metastable Defects and Its Effect on the Electronic Properties of MoS2 Films , 2018, Scientific Reports.

[48]  Huijun Zhao,et al.  One-step synthesis of cobalt-doped MoS2 nanosheets as bifunctional electrocatalysts for overall water splitting under both acidic and alkaline conditions. , 2018, Chemical communications.

[49]  Brian M. Bersch,et al.  Tuning the Electronic and Photonic Properties of Monolayer MoS2 via In Situ Rhenium Substitutional Doping , 2018 .

[50]  R. Ma,et al.  Insight into the structural and electronic nature of chemically exfoliated molybdenum disulfide nanosheets in aqueous dispersions. , 2018, Dalton transactions.

[51]  B. Jena,et al.  MoS2 Quantum Dots as Efficient Catalyst Materials for the Oxygen Evolution Reaction , 2018 .

[52]  Jonghwan Kim,et al.  Reconfiguring crystal and electronic structures of MoS2 by substitutional doping , 2018, Nature Communications.

[53]  M. Klein,et al.  Effect of Intercalated Metals on the Electrocatalytic Activity of 1T-MoS2 for the Hydrogen Evolution Reaction , 2018 .

[54]  Noah D Bronstein,et al.  Balancing the Hydrogen Evolution Reaction, Surface Energetics, and Stability of Metallic MoS2 Nanosheets via Covalent Functionalization. , 2018, Journal of the American Chemical Society.

[55]  K. Loh,et al.  Low-dimensional catalysts for hydrogen evolution and CO2 reduction , 2018 .

[56]  A. Jesacher,et al.  Material characterisation with methods of nonlinear optics , 2018 .

[57]  Eric Pop,et al.  Nanoscale Heterogeneities in Monolayer MoSe2 Revealed by Correlated Scanning Probe Microscopy and Tip-Enhanced Raman Spectroscopy , 2017 .

[58]  D. Geng,et al.  Understanding the high-electrocatalytic performance of two-dimensional MoS2 nanosheets and their composite materials , 2017 .

[59]  Di Zhang,et al.  Quantum Dots of 1T Phase Transitional Metal Dichalcogenides Generated via Electrochemical Li Intercalation. , 2017, ACS nano.

[60]  S. Qiao,et al.  Hierarchical 1T-MoS2 nanotubular structures for enhanced supercapacitive performance , 2017 .

[61]  Seung Geol Lee,et al.  Rational design of exfoliated 1T MoS2@CNT-based bifunctional separators for lithium sulfur batteries , 2017 .

[62]  U. Waghmare,et al.  Chemically exfoliated Mo S 2 layers: Spectroscopic evidence for the semiconducting nature of the dominant trigonal metastable phase , 2017 .

[63]  Changsheng Song,et al.  Observation of superconductivity in 1T′-MoS2 nanosheets , 2017 .

[64]  X. Xia,et al.  Energy Level Engineering of MoS2 by Transition-Metal Doping for Accelerating Hydrogen Evolution Reaction. , 2017, Journal of the American Chemical Society.

[65]  Richard G. Hennig,et al.  Doping-controlled phase transitions in single-layer MoS2 , 2017 .

[66]  Hongli Zhu,et al.  Freestanding Metallic 1T MoS2 with Dual Ion Diffusion Paths as High Rate Anode for Sodium‐Ion Batteries , 2017 .

[67]  Ping Liu,et al.  Two-Dimensional Material Molybdenum Disulfides as Electrocatalysts for Hydrogen Evolution , 2017 .

[68]  M. A. Malik,et al.  The influence of precursor on rhenium incorporation into Re-doped MoS2 (Mo1−xRexS2) thin films by aerosol-assisted chemical vapour deposition (AACVD) , 2017 .

[69]  Ying Yu,et al.  Copper nanoparticle interspersed MoS2 nanoflowers with enhanced efficiency for CO2 electrochemical reduction to fuel. , 2017, Dalton transactions.

[70]  M. Ashokkumar,et al.  Recent advances in MoS2 nanostructured materials for energy and environmental applications – A Review , 2017 .

[71]  Jang‐Yeon Hwang,et al.  Sodium-ion batteries: present and future. , 2017, Chemical Society reviews.

[72]  I. Kinloch,et al.  A simple electrochemical route to metallic phase trilayer MoS2: evaluation as electrocatalysts and supercapacitors , 2017 .

[73]  H. Xie,et al.  Vertical 1T-MoS2 nanosheets with expanded interlayer spacing edged on a graphene frame for high rate lithium-ion batteries. , 2017, Nanoscale.

[74]  G. Duscher,et al.  Suppression of Defects and Deep Levels Using Isoelectronic Tungsten Substitution in Monolayer MoSe2 , 2017 .

[75]  Qiyuan He,et al.  Recent Advances in Ultrathin Two-Dimensional Nanomaterials. , 2017, Chemical reviews.

[76]  Rou Jun Toh,et al.  3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution. , 2017, Chemical communications.

[77]  Matthew T. Darby,et al.  MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. , 2017, Nature chemistry.

[78]  Weitao Yang,et al.  All The Catalytic Active Sites of MoS2 for Hydrogen Evolution. , 2016, Journal of the American Chemical Society.

[79]  Song Jin,et al.  Efficient Electrocatalytic and Photoelectrochemical Hydrogen Generation Using MoS2 and Related Compounds , 2016 .

[80]  Tianxi Liu,et al.  Self-Templated Growth of Vertically Aligned 2H-1T MoS2 for Efficient Electrocatalytic Hydrogen Evolution. , 2016, ACS applied materials & interfaces.

[81]  J. Hupp,et al.  Atomic Layer Deposition of Ultrathin Nickel Sulfide Films and Preliminary Assessment of Their Performance as Hydrogen Evolution Catalysts. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[82]  A. Stroppa,et al.  Possibility of combining ferroelectricity and Rashba-like spin splitting in monolayers of the 1 T -type transition-metal dichalcogenides M X 2 ( M = Mo , W ; X = S , Se , Te ) , 2016, 1610.00303.

[83]  Lu Li,et al.  Transition‐Metal Substitution Doping in Synthetic Atomically Thin Semiconductors , 2016, Advanced materials.

[84]  C. Rao,et al.  Two-dimensional inorganic analogues of graphene: transition metal dichalcogenides , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[85]  Gautam Gupta,et al.  The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. , 2016, Nature materials.

[86]  Yi Luo,et al.  In situ Integration of a Metallic 1T‐MoS2/CdS Heterostructure as a Means to Promote Visible‐Light‐Driven Photocatalytic Hydrogen Evolution , 2016 .

[87]  R. Norwood,et al.  Ultra-strong nonlinear optical processes and trigonal warping in MoS2 layers , 2016, Nature Communications.

[88]  Moon J. Kim,et al.  Covalent Nitrogen Doping and Compressive Strain in MoS2 by Remote N2 Plasma Exposure. , 2016, Nano letters.

[89]  R. Wallace,et al.  Remote Plasma Oxidation and Atomic Layer Etching of MoS2. , 2016, ACS applied materials & interfaces.

[90]  Qing Tang,et al.  Mechanism of Hydrogen Evolution Reaction on 1T-MoS2 from First Principles , 2016 .

[91]  Yumin Zhang,et al.  Contributions of Phase, Sulfur Vacancies, and Edges to the Hydrogen Evolution Reaction Catalytic Activity of Porous Molybdenum Disulfide Nanosheets. , 2016, Journal of the American Chemical Society.

[92]  X. Lou,et al.  Synthesis of Highly Uniform Molybdenum-Glycerate Spheres and Their Conversion into Hierarchical MoS2 Hollow Nanospheres for Lithium-Ion Batteries. , 2016, Angewandte Chemie.

[93]  Charlie Tsai,et al.  How Doped MoS2 Breaks Transition-Metal Scaling Relations for CO2 Electrochemical Reduction , 2016 .

[94]  K. Yan,et al.  Direct Growth of MoS2 Microspheres on Ni Foam as a Hybrid Nanocomposite Efficient for Oxygen Evolution Reaction. , 2016, Small.

[95]  P. Ajayan,et al.  Exfoliated 2D Transition Metal Disulfides for Enhanced Electrocatalysis of Oxygen Evolution Reaction in Acidic Medium , 2016 .

[96]  M. S. Jeong,et al.  Photochemical Reaction in Monolayer MoS2 via Correlated Photoluminescence, Raman Spectroscopy, and Atomic Force Microscopy. , 2016, ACS nano.

[97]  F. Wen,et al.  Microwave synthesized self-standing electrode of MoS2 nanosheets assembled on graphene foam for high-performance Li-Ion and Na-Ion batteries , 2016 .

[98]  Zhiyong Xiao,et al.  Multimodal Nonlinear Optical Imaging of MoS₂ and MoS₂-Based van der Waals Heterostructures. , 2016, ACS nano.

[99]  Bo Chen,et al.  Preparation of Single-Layer MoS(2x)Se2(1-x) and Mo(x)W(1-x)S2 Nanosheets with High-Concentration Metallic 1T Phase. , 2016, Small.

[100]  Hongli Zhu,et al.  Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction , 2016, Nature Communications.

[101]  S. Lodha,et al.  Few-Layer MoS₂ p-Type Devices Enabled by Selective Doping Using Low Energy Phosphorus Implantation. , 2016, ACS nano.

[102]  Robert Vajtai,et al.  Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction. , 2016, Nano letters.

[103]  Ziqiang Zhu,et al.  Preparation of hollow microsphere@onion-like solid nanosphere MoS2 coated by a carbon shell as a stable anode for optimized lithium storage. , 2016, Nanoscale.

[104]  Huakun Liu,et al.  Growth of MoS2@C nanobowls as a lithium-ion battery anode material , 2015 .

[105]  N. Dai,et al.  Tuning photoluminescence of single-layer MoS2 using H2O2 , 2015 .

[106]  Shuangyin Wang,et al.  SiO2-directed surface control of hierarchical MoS2 microspheres for stable lithium-ion batteries , 2015 .

[107]  Yifan Sun,et al.  Fast and Efficient Preparation of Exfoliated 2H MoS2 Nanosheets by Sonication-Assisted Lithium Intercalation and Infrared Laser-Induced 1T to 2H Phase Reversion. , 2015, Nano letters.

[108]  Fugen Sun,et al.  Melamine-assisted one-pot synthesis of hierarchical nitrogen-doped carbon@MoS₂ nanowalled core-shell microspheres and their enhanced Li-storage performances. , 2015, Nanoscale.

[109]  L. Ottaviano,et al.  Few layered MoS2 lithography with an AFM tip: description of the technique and nanospectroscopy investigations. , 2015, Nanoscale.

[110]  P. Ajayan,et al.  Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide , 2015, Nature Communications.

[111]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[112]  Jonathan N. Coleman,et al.  Basal-Plane Functionalization of Chemically Exfoliated Molybdenum Disulfide by Diazonium Salts. , 2015, ACS nano.

[113]  M. Chhowalla,et al.  Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. , 2015, Nature nanotechnology.

[114]  A. Mohite,et al.  Phase engineering of transition metal dichalcogenides. , 2015, Chemical Society reviews.

[115]  D. Kang,et al.  Growth of three dimensional flower-like molybdenum disulfide hierarchical structures on graphene/carbon nanotube network: An advanced heterostructure for energy storage devices , 2015 .

[116]  R. Wallace,et al.  Surface oxidation energetics and kinetics on MoS2 monolayer , 2015 .

[117]  Hongwei Zhu,et al.  Two-dimensional MoS2: Properties, preparation, and applications , 2015 .

[118]  Oleg Kolosov,et al.  Structural, optical and electrostatic properties of single and few-layers MoS2: effect of substrate , 2015 .

[119]  Wensheng Yan,et al.  Vacancy-induced ferromagnetism of MoS2 nanosheets. , 2015, Journal of the American Chemical Society.

[120]  W. Ding,et al.  Synthesized ultrathin MoS2 nanosheets perpendicular to graphene for catalysis of hydrogen evolution reaction. , 2015, Chemical communications.

[121]  Selena M. Russell,et al.  Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes. , 2015, Nano letters.

[122]  Sefaattin Tongay,et al.  Doping against the native propensity of MoS2: degenerate hole doping by cation substitution. , 2014, Nano letters.

[123]  J. Tascón,et al.  Chemically exfoliated MoS₂ nanosheets as an efficient catalyst for reduction reactions in the aqueous phase. , 2014, ACS applied materials & interfaces.

[124]  Giuseppe Iannaccone,et al.  Electronics based on two-dimensional materials. , 2014, Nature nanotechnology.

[125]  Bin Wang,et al.  Rational design of MoS2@graphene nanocables: towards high performance electrode materials for lithium ion batteries , 2014 .

[126]  Hasan Sahin,et al.  Monolayers of MoS2 as an oxidation protective nanocoating material , 2014 .

[127]  P. Král,et al.  Robust carbon dioxide reduction on molybdenum disulphide edges , 2014, Nature Communications.

[128]  Junwei Liu,et al.  Quantum spin Hall effect in two-dimensional transition metal dichalcogenides , 2014, Science.

[129]  R. Hamers,et al.  Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2. , 2014, Journal of the American Chemical Society.

[130]  Seok‐In Na,et al.  Exfoliated and partially oxidized MoS₂ nanosheets by one-pot reaction for efficient and stable organic solar cells. , 2014, Small.

[131]  A. Javey,et al.  Air-stable surface charge transfer doping of MoS₂ by benzyl viologen. , 2014, Journal of the American Chemical Society.

[132]  Ananthakumar Ramadoss,et al.  Enhanced activity of a hydrothermally synthesized mesoporous MoS2 nanostructure for high performance supercapacitor applications , 2014 .

[133]  Wei Huang,et al.  General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation. , 2014, Nanoscale.

[134]  Yunhui Huang,et al.  Hierarchical MoS2 nanosheet/active carbon fiber cloth as a binder-free and free-standing anode for lithium-ion batteries. , 2014, Nanoscale.

[135]  Qing Zhang,et al.  Few-layer MoS2: a promising layered semiconductor. , 2014, ACS nano.

[136]  S. Louie,et al.  Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. , 2014, Nature materials.

[137]  V. Presser,et al.  Carbons and Electrolytes for Advanced Supercapacitors , 2014, Advanced materials.

[138]  J. Maultzsch,et al.  Effect of contaminations and surface preparation on the work function of single layer MoS2 , 2014, Beilstein journal of nanotechnology.

[139]  K. Banerjee,et al.  MoS₂ field-effect transistor for next-generation label-free biosensors. , 2014, ACS nano.

[140]  Qiang Sun,et al.  Structures and Phase Transition of a MoS2 Monolayer , 2014 .

[141]  G. Eda,et al.  Conducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction. , 2013, Nano letters.

[142]  Haotian Wang,et al.  Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction , 2013, Proceedings of the National Academy of Sciences.

[143]  Ling-Ling Wang,et al.  Synthesis of polyaniline/2-dimensional graphene analog MoS2 composites for high-performance supercapacitor , 2013 .

[144]  P. Jarillo-Herrero,et al.  Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. , 2013, Nature nanotechnology.

[145]  Wei Gao,et al.  Direct laser-patterned micro-supercapacitors from paintable MoS2 films. , 2013, Small.

[146]  S. Qin,et al.  Functionalization of monolayer MoS2 by substitutional doping: A first-principles study , 2013 .

[147]  S. Lau,et al.  Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. , 2013, ACS nano.

[148]  Fei Meng,et al.  Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. , 2013, Journal of the American Chemical Society.

[149]  Yilei Li,et al.  Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. , 2013, Nano letters.

[150]  Xiaolin Wei,et al.  Electrostatic properties of few-layer MoS2 films , 2013 .

[151]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[152]  T. Nam,et al.  Discharge mechanism of MoS2 for sodium ion battery: Electrochemical measurements and characterization , 2013 .

[153]  S. K. Srivastava,et al.  MoS2-MWCNT hybrids as a superior anode in lithium-ion batteries. , 2013, Chemical communications.

[154]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[155]  Hisato Yamaguchi,et al.  Coherent atomic and electronic heterostructures of single-layer MoS2. , 2012, ACS nano.

[156]  Can Ataca,et al.  Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure , 2012 .

[157]  B. Chakraborty,et al.  Symmetry-dependent phonon renormalization in monolayer MoS2transistor , 2012, Physical Review B.

[158]  Kinam Kim,et al.  High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals , 2012, Nature Communications.

[159]  Zhiyuan Zeng,et al.  Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. , 2011, Angewandte Chemie.

[160]  Andras Kis,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[161]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[162]  Jaephil Cho,et al.  MoS₂ nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. , 2011, Nano letters.

[163]  E. Aktürk,et al.  A Comparative Study of Lattice Dynamics of Three- and Two-Dimensional MoS2 , 2011 .

[164]  Lelia Cosimbescu,et al.  Exfoliated MoS2 Nanocomposite as an Anode Material for Lithium Ion Batteries , 2010 .

[165]  Changgu Lee,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[166]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[167]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[168]  David O. Scanlon,et al.  Theoretical and Experimental Study of the Electronic Structures of MoO3 and MoO2 , 2010 .

[169]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[170]  C. Colliex,et al.  Ab initio study of bilateral doping within the MoS2-NbS2 system , 2008, 0806.1411.

[171]  K. Loh,et al.  Electrochemical Double-Layer Capacitance of MoS[sub 2] Nanowall Films , 2007 .

[172]  Y. Ukyo,et al.  Performance of LiNiCoO2 materials for advanced lithium-ion batteries , 2005 .

[173]  Chester G. Motloch,et al.  Effect of cathode composition on capacity fade, impedance rise and power fade in high-power, lithium-ion cells☆ , 2003 .

[174]  G. Amaratunga,et al.  Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear , 2000, Nature.

[175]  James A. Ritter,et al.  Development of carbon-metal oxide supercapacitors from sol-gel derived carbon-ruthenium xerogels , 1999 .

[176]  N. Brown,et al.  An AFM study of the topography of natural MoS2 following treatment in an RF–oxygen plasma , 1999 .

[177]  Jim P. Zheng,et al.  Ruthenium Oxide‐Carbon Composite Electrodes for Electrochemical Capacitors , 1999 .

[178]  M. Kanatzidis,et al.  Structure of Restacked MoS2 and WS2 Elucidated by Electron Crystallography , 1999 .

[179]  Yang,et al.  Raman study and lattice dynamics of single molecular layers of MoS2. , 1991, Physical review. B, Condensed matter.

[180]  Yang,et al.  Real-space imaging of single-layer MoS2 by scanning tunneling microscopy. , 1991, Physical review. B, Condensed matter.

[181]  Yang,et al.  Structure of single-molecular-layer MoS2. , 1991, Physical review. B, Condensed matter.

[182]  S. Morrison,et al.  Inclusion Systems of Organic Molecules in Restacked Single-Layer Molybdenum Disulfide , 1989, Science.

[183]  S. Morrison,et al.  Single-layer MoS2 , 1986 .

[184]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[185]  J. Wilson,et al.  Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides , 1975 .

[186]  R. Somoano,et al.  Alkali metal intercalates of molybdenum disulfide. , 1973 .

[187]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[188]  Ying Yu,et al.  Reaction mechanisms for reduction of CO2 to CO on monolayer MoS2 , 2020 .

[189]  T. Zhai,et al.  Smart supercapacitors with deformable and healable functions , 2017 .

[190]  Yi Cui,et al.  The path towards sustainable energy. , 2016, Nature materials.

[191]  Takeshi Fujita,et al.  Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. , 2015, Nature chemistry.

[192]  Brian C. Olsen,et al.  Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites , 2014 .

[193]  F. Wypych,et al.  1T-MoS2, a new metallic modification of molybdenum disulfide , 1992 .

[194]  S. Morrison,et al.  Spread films of single molecular transition-metal sulphides , 1991 .

[195]  R. R. Haering,et al.  Structural destabilization induced by lithium intercalation in MoS2 and related compounds , 1983 .