Many‐body dispersion interactions for periodic systems based on maximally localized Wannier functions: Application to graphene/water systems

We extend the method of Silvestrelli [P. L. Silvestrelli, J. Chem. Phys. 139, 054106 (2013)] to approximate long-range van der Waals interactions at the density functional level of theory to periodic systems. The eventual approach is based on a combination of maximally localized Wannier functions with the quantum harmonic oscillator-model. Applying this scheme to study London dispersion forces between graphene and water layers, we find that collective many-body effects beyond simple pair-wise additive interactions are essential to accurately describe van der Waals forces.

[1]  Xavier Gonze,et al.  Accurate density functionals: Approaches using the adiabatic-connection fluctuation-dissipation theorem , 2002 .

[2]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[3]  J. Vondrášek,et al.  Structure and Stability of the Water−Graphite Complexes , 2009 .

[4]  M. I. Katsnelson,et al.  Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering , 2010 .

[5]  Stefano de Gironcoli,et al.  Nonlocal van der Waals density functional made simple and efficient , 2013 .

[6]  Efthimios Kaxiras,et al.  New Insights into the Structure of the Vapor/Water Interface from Large-Scale First-Principles Simulations. , 2011, The journal of physical chemistry letters.

[7]  Ivano Tavernelli,et al.  Variational optimization of effective atom centered potentials for molecular properties. , 2005, The Journal of chemical physics.

[8]  A. Tkatchenko,et al.  Accurate and efficient method for many-body van der Waals interactions. , 2012, Physical review letters.

[9]  Michele Parrinello,et al.  An efficient and accurate decomposition of the Fermi operator. , 2008, The Journal of chemical physics.

[10]  Francois Gygi,et al.  Water confined in nanotubes and between graphene sheets: a first principle study. , 2008, Journal of the American Chemical Society.

[11]  Ikutaro Hamada,et al.  Adsorption of water on graphene: A van der Waals density functional study , 2012 .

[12]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[13]  Friedhelm Bechstedt,et al.  Semiempirical van der Waals correction to the density functional description of solids and molecular structures , 2006 .

[14]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[15]  Li Shi,et al.  Two-Dimensional Phonon Transport in Supported Graphene , 2010, Science.

[16]  A. Tkatchenko,et al.  van der Waals dispersion interactions in molecular materials: beyond pairwise additivity , 2015, Chemical science.

[17]  Ashcroft,et al.  Fluctuation attraction in condensed matter: A nonlocal functional approach. , 1991, Physical review. B, Condensed matter.

[18]  Qin Wu,et al.  Empirical correction to density functional theory for van der Waals interactions , 2002 .

[19]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[20]  Andreas Görling,et al.  Random phase approximation correlation energies with exact Kohn–Sham exchange , 2010 .

[21]  A. Zettl,et al.  Strain-Induced Pseudo–Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles , 2010, Science.

[22]  A. Ambrosetti,et al.  Adsorption of Rare-Gas Atoms and Water on Graphite and Graphene by van der Waals-Corrected Density Functional Theory , 2011 .

[23]  Qing Hua Wang,et al.  Breakdown in the wetting transparency of graphene. , 2012, Physical review letters.

[24]  Troy Van Voorhis,et al.  Nonlocal van der Waals density functional: the simpler the better. , 2010, The Journal of chemical physics.

[25]  A. Donchev,et al.  Many-body effects of dispersion interaction. , 2006, The Journal of chemical physics.

[26]  B. Berne,et al.  Many‐body dispersion forces of polarizable clusters and liquids , 1992 .

[27]  M. Schütz,et al.  On the physisorption of water on graphene: a CCSD(T) study. , 2011, Physical chemistry chemical physics : PCCP.

[28]  Glenn J. Martyna,et al.  A unified formalism for many-body polarization and dispersion: The quantum Drude model applied to fluid xenon , 2006 .

[29]  R. O. Jones,et al.  The density functional formalism, its applications and prospects , 1989 .

[30]  Pier Luigi Silvestrelli,et al.  Van der Waals interactions in density functional theory using Wannier functions. , 2009, The journal of physical chemistry. A.

[31]  Thomas Spura,et al.  Structure and Dynamics of the Instantaneous Water/Vapor Interface Revisited by Path-Integral and Ab Initio Molecular Dynamics Simulations. , 2015, The journal of physical chemistry. B.

[32]  Giacinto Scoles,et al.  Intermolecular forces in simple systems , 1977 .

[33]  D. Vanderbilt,et al.  Electric polarization as a bulk quantity and its relation to surface charge. , 1993, Physical review. B, Condensed matter.

[34]  Exchange and correlation kernels at the resonance frequency: Implications for excitation energies in density-functional theory , 1999, cond-mat/9905119.

[35]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[36]  Ji Feng,et al.  Influence of water on the electronic structure of metal supported graphene: Insight from van der Waals density functional theory , 2012 .

[37]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[38]  C. N. Lau,et al.  Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. , 2009, Nature nanotechnology.

[39]  M. Reza Rahimi Tabar,et al.  Interplay between geometrical structure and electronic properties in rippled free-standing graphene , 2011 .

[40]  M. Strano,et al.  Wetting translucency of graphene. , 2013, Nature materials.

[41]  F. Ancilotto,et al.  van der Waals-Corrected Ab Initio Study of Water Ice–Graphite Interaction , 2013 .

[42]  Xu Du,et al.  Approaching ballistic transport in suspended graphene. , 2008, Nature nanotechnology.

[43]  Pier Luigi Silvestrelli,et al.  Gas Separation in Nanoporous Graphene from First Principle Calculations , 2014 .

[44]  J. Klimeš,et al.  Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory. , 2012, The Journal of chemical physics.

[45]  C. N. Lau,et al.  Evidence for strain-induced local conductance modulations in single-layer graphene on SiO2. , 2009, Nano letters.

[46]  Michele Parrinello,et al.  General and efficient algorithms for obtaining maximally localized Wannier functions , 2000 .

[47]  U Zeitler,et al.  Room-Temperature Quantum Hall Effect in Graphene , 2007, Science.

[48]  Pier Luigi Silvestrelli,et al.  Van der Waals interactions in density functional theory by combining the quantum harmonic oscillator-model with localized Wannier functions. , 2013, The Journal of chemical physics.

[49]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[50]  Thomas D. Kuhne,et al.  A Hybrid Approach to Fermi Operator Expansion , 2009 .

[51]  P. L. Silvestrelli,et al.  van der Waals interactions in density functional theory using Wannier functions: Improved C 6 and C 3 coefficients by a different approach , 2012 .

[52]  K. Klitzing,et al.  Observation of electron–hole puddles in graphene using a scanning single-electron transistor , 2007, 0705.2180.

[53]  Steven G. Louie,et al.  MICROSCOPIC DETERMINATION OF THE INTERLAYER BINDING ENERGY IN GRAPHITE , 1998 .

[54]  Matthias Krack,et al.  Efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics. , 2007, Physical review letters.

[55]  Tim O. Wehling,et al.  First-principles studies of water adsorption on graphene: The role of the substrate , 2008, 0809.2894.

[56]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[57]  A. Lucas Collective contributions to the long-range dipolar interaction in rare-gas crystals , 1967 .

[58]  Ivano Tavernelli,et al.  Optimization of effective atom centered potentials for london dispersion forces in density functional theory. , 2004, Physical review letters.

[59]  Teter,et al.  Separable dual-space Gaussian pseudopotentials. , 1996, Physical review. B, Condensed matter.

[60]  Joost VandeVondele,et al.  Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. , 2007, The Journal of chemical physics.

[61]  Michele Parrinello,et al.  Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..

[62]  Yunfeng Shi,et al.  Wetting transparency of graphene. , 2012, Nature materials.

[63]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[64]  Petros Koumoutsakos,et al.  Dispersion corrections to density functionals for water aromatic interactions. , 2004, The Journal of chemical physics.

[65]  Saroj K. Nayak,et al.  Towards extending the applicability of density functional theory to weakly bound systems , 2001 .

[66]  Matthias Krack,et al.  Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals , 2005 .

[67]  A. V. Fedorov,et al.  Substrate-induced bandgap opening in epitaxial graphene. , 2007, Nature materials.

[68]  P. Nachtigall,et al.  Accurate description of argon and water adsorption on surfaces of graphene-based carbon allotropes. , 2011, The journal of physical chemistry. A.

[69]  A. Lucas Self-consistent polarization waves and dispersion forces in crystals , 1968 .

[70]  B. Nijboer,et al.  Microscopic derivation of macroscopic Van der Waals forces , 1967 .

[71]  T. Kühne,et al.  Self-consistent field theory based molecular dynamics with linear system-size scaling. , 2012, The Journal of chemical physics.

[72]  Michele Parrinello,et al.  A hybrid Gaussian and plane wave density functional scheme , 1997 .

[73]  J. Murray,et al.  Polarizability and volume , 1993 .

[74]  Pier Luigi Silvestrelli,et al.  Van der Waals interactions in DFT made easy by Wannier functions. , 2007, Physical review letters.

[75]  A. Lucas On the many-body Van der Waals forces between macroscopic bodies , 1968 .

[76]  Pouya Partovi-Azar,et al.  Evidence for the existence of Li2S2 clusters in lithium-sulfur batteries: ab initio Raman spectroscopy simulation. , 2015, Physical chemistry chemical physics : PCCP.

[77]  I Wayan Sudiarta,et al.  Interaction energy of a water molecule with a single-layer graphitic surface modeled by hydrogen- and fluorine-terminated clusters. , 2006, Journal of Physical Chemistry A.

[78]  Alexandre Tkatchenko,et al.  Two- and three-body interatomic dispersion energy contributions to binding in molecules and solids. , 2010, The Journal of chemical physics.

[79]  Dmitrii E. Makarov,et al.  van der Waals Energies in Density Functional Theory , 1998 .

[80]  Q. Zheng,et al.  Interlayer binding energy of graphite: A mesoscopic determination from deformation , 2012 .

[81]  E. Wang,et al.  Adsorption and diffusion of water on graphene from first principles , 2011 .

[82]  David Feller,et al.  Estimating the Strength of the Water/Single-Layer Graphite Interaction , 2000 .

[83]  Patric Schyman,et al.  Exploring Adsorption of Water and Ions on Carbon Surfaces using a Polarizable Force Field. , 2013, The journal of physical chemistry letters.

[84]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[85]  Hendrik Ulbricht,et al.  Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons , 2004 .