DNA-Based Optical Sensors for Forces in Cytoskeletal Networks

[1]  J. Enderlein,et al.  Graphene-based metal-induced energy transfer for sub-nanometre optical localization , 2019, Nature Photonics.

[2]  Cheng Zhu,et al.  Programmable Multivalent DNA-Origami Tension Probes for Reporting Cellular Traction Forces. , 2018, Nano letters.

[3]  J. Käs,et al.  Synthetic Transient Crosslinks Program the Mechanics of Soft, Biopolymer‐Based Materials , 2018, Advanced materials.

[4]  K. Salaita,et al.  Molecular Tension Probes for Imaging Forces at the Cell Surface. , 2017, Accounts of chemical research.

[5]  C. Schmidt,et al.  Molecular force sensors to measure stress in cells , 2017 .

[6]  R. Grosse,et al.  Actin visualization at a glance , 2017, Journal of Cell Science.

[7]  William J Polacheck,et al.  Measuring cell-generated forces: a guide to the available tools , 2016, Nature Methods.

[8]  C. Schmidt,et al.  Force fluctuations in three-dimensional suspended fibroblasts , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[9]  Cheng Zhu,et al.  DNA-based digital tension probes reveal integrin forces during early cell adhesion , 2014, Nature Communications.

[10]  F. Rehfeldt,et al.  Novel Growth Regime of MDCK II Model Tissues on Soft Substrates , 2014, Biophysical journal.

[11]  Taekjip Ha,et al.  Defining Single Molecular Forces Required to Activate Integrin and Notch Signaling , 2013, Science.

[12]  Kimihide Hayakawa,et al.  Actin filaments function as a tension sensor by tension-dependent binding of cofilin to the filament , 2011, The Journal of cell biology.

[13]  K. Salaita,et al.  Visualizing mechanical tension across membrane receptors with a fluorescent sensor , 2011, Nature Methods.

[14]  Fred C. MacKintosh,et al.  Active multistage coarsening of actin networks driven by myosin motors , 2011, Proceedings of the National Academy of Sciences.

[15]  Conrad Steenberg,et al.  NUPACK: Analysis and design of nucleic acid systems , 2011, J. Comput. Chem..

[16]  Christopher S. Chen,et al.  Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics , 2010, Nature.

[17]  D. Discher,et al.  Optimal matrix rigidity for stress fiber polarization in stem cells. , 2010, Nature physics.

[18]  D. Weitz,et al.  Dynamic viscoelasticity of actin cross-linked with wild-type and disease-causing mutant alpha-actinin-4. , 2008, Biophysical journal.

[19]  T. Holak,et al.  Lifeact: a versatile marker to visualize F-actin , 2008, Nature Methods.

[20]  Marjeta Urh,et al.  HaloTag: a novel protein labeling technology for cell imaging and protein analysis. , 2008, ACS chemical biology.

[21]  Frederick Sachs,et al.  A fluorescence energy transfer‐based mechanical stress sensor for specific proteins in situ , 2008, The FEBS journal.

[22]  D. Discher,et al.  Cell responses to the mechanochemical microenvironment--implications for regenerative medicine and drug delivery. , 2007, Advanced drug delivery reviews.

[23]  V. Torre,et al.  Properties of the Force Exerted by Filopodia and Lamellipodia and the Involvement of Cytoskeletal Components , 2007, PloS one.

[24]  J. Hartwig,et al.  Disease-associated mutant α-actinin-4 reveals a mechanism for regulating its F-actin-binding affinity , 2007, Proceedings of the National Academy of Sciences.

[25]  D. Herschlag,et al.  Direct Measurement of the Full, Sequence-Dependent Folding Landscape of a Nucleic Acid , 2006, Science.

[26]  S. Sen,et al.  Matrix Elasticity Directs Stem Cell Lineage Specification , 2006, Cell.

[27]  P. Lappalainen,et al.  Stress fibers are generated by two distinct actin assembly mechanisms in motile cells , 2006, The Journal of cell biology.

[28]  D. Herschlag,et al.  Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[29]  B. Reinhard,et al.  Biocompatible force sensor with optical readout and dimensions of 6 nm3. , 2005, Nano letters.

[30]  K. Cole,et al.  The effect of overhanging nucleotides on fluorescence properties of hybridising oligonucleotides labelled with Alexa-488 and FAM fluorophores. , 2005, Biophysical chemistry.

[31]  Rainer Erdmann,et al.  TCSPC upgrade of a confocal FCS microscope , 2005 .

[32]  G. Borisy,et al.  Cell Migration: Integrating Signals from Front to Back , 2003, Science.

[33]  J. Liphardt,et al.  Reversible Unfolding of Single RNA Molecules by Mechanical Force , 2001, Science.

[34]  M. Rief,et al.  Reversible unfolding of individual titin immunoglobulin domains by AFM. , 1997, Science.

[35]  S. Smith,et al.  Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. , 1992, Science.

[36]  A. Ashkin,et al.  Optical trapping and manipulation of viruses and bacteria. , 1987, Science.

[37]  K. Salaita,et al.  Supporting Material for : Integrin Generated Forces Lead to Streptavidin-Biotin Unbinding in Cellular Adhesions , 2014 .

[38]  B. Geiger,et al.  Environmental sensing through focal adhesions , 2009, Nature Reviews Molecular Cell Biology.

[39]  A. Mogilner,et al.  Cell division , 2003, Nature.

[40]  R. Mullins,et al.  Cellular control of actin nucleation. , 2002, Annual review of cell and developmental biology.

[41]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .