Fault-tolerant routing in circulant networks and cycle prefix networks

Reliability and efficiency are important criteria in the design of interconnection networks. Connectivity is a widely used measurement for network fault-tolerance capacities, while diameter determines routing efficiency along individual paths. In practice, we are interested in high-connectivity, small-diameter networks. Recently, Hsu introduced the notion ofw-wide diameter, which unifies diameter and connectivity. This paper investigates thew-wide diameterdw(G) and two related parameters:w-fault diameterDw(G) andw-Rabin numberrw(G). In particular, we determinedw(G) andDw(G) for 2≤w≤K(G) andG is a circulant digraphG(dn; ∈1,d,...,dn−1∉) or a cycle prefix digraph.

[1]  Dhiraj K. Pradhan,et al.  Flip-Trees: Fault-Tolerant Graphs with Wide Containers , 1988, IEEE Trans. Computers.

[2]  Jean-Claude Bermond Interconnection Networks , 1992 .

[3]  Shahram Latifi On the Fault-Diameter of the Star Graph , 1993, Inf. Process. Lett..

[4]  S. Louis Hakimi,et al.  Fault-Tolerant Routing in DeBruijn Comrnunication Networks , 1985, IEEE Transactions on Computers.

[5]  William Y. C. Chen,et al.  Restricted routing and wide diameter of the cycle prefix network , 1994, Interconnection Networks and Mapping and Scheduling Parallel Computations.

[6]  Gerard J. Chang,et al.  Generalized Diameters and Rabin Numbers of Networks , 1998, J. Comb. Optim..

[7]  D. Frank Hsu,et al.  On the k-diameter of k-regular k-connected graphs , 1994, Discret. Math..

[8]  Yuh-Dauh Lyuu,et al.  A graph-theoretical study of transmission delay and fault tolerance , 1994 .

[9]  Gerard J. Chang,et al.  WIDE DIAMETERS OF BUTTERFLY NETWORKS , 1999 .

[10]  Gerard J. Chang,et al.  Rabin numbers of Butterfly networks , 1999, Discret. Math..

[11]  Ding-Zhu Du,et al.  Line Digraph Iterations and Connectivity Analysis of de Bruijn and Kautz Graphs , 1993, IEEE Trans. Computers.

[12]  Makoto Imase,et al.  Fault-tolerant processor interconnection networks , 1986, Systems and Computers in Japan.

[13]  Yahya Ould Hamidoune,et al.  On the Connectivity of Cayley Digraphs , 1984, Eur. J. Comb..

[14]  M. Krishnamoorthy,et al.  Fault diameter of interconnection networks , 1987 .

[15]  D.Z. Du,et al.  On the diameter vulnerability of Kautz digraphs , 1996, Discret. Math..

[16]  Michael O. Rabin,et al.  Efficient dispersal of information for security, load balancing, and fault tolerance , 1989, JACM.

[17]  Frank Ruskey,et al.  Determining the hamilton-connectedness of certain vertex-transitive graphs , 1994, Discret. Math..

[18]  William Y. C. Chen,et al.  Cycle prefix digraphs for symmetric interconnection networks , 1993, Networks.

[19]  Shahram Latifi Combinatorial Analysis of the Fault-Diameter of the n-cube , 1993, IEEE Trans. Computers.