Structural Basis of Rab Effector Specificity Crystal Structure of the Small G Protein Rab3A Complexed with the Effector Domain of Rabphilin-3A

[1]  W. Wickner,et al.  Defining the functions of trans-SNARE pairs , 1998, Nature.

[2]  S. Conner,et al.  rab3 mediates cortical granule exocytosis in the sea urchin egg. , 1998, Developmental biology.

[3]  G N Murshudov,et al.  Incorporation of prior phase information strengthens maximum-likelihood structure refinement. , 1998, Acta crystallographica. Section D, Biological crystallography.

[4]  J. Goldberg,et al.  Structural Basis for Activation of ARF GTPase Mechanisms of Guanine Nucleotide Exchange and GTP–Myristoyl Switching , 1998, Cell.

[5]  A. Chawla,et al.  A functional PtdIns(3)P-binding motif , 1998, Nature.

[6]  S. Cockcroft,et al.  Vesicular transport: Sticky fingers grab a lipid , 1998, Nature.

[7]  Marino Zerial,et al.  EEA1 links PI(3)K function to Rab5 regulation of endosome fusion , 1998, Nature.

[8]  Rein Aasland,et al.  FYVE fingers bind PtdIns(3)P , 1998, Nature.

[9]  Lan Huang,et al.  Structural basis for the interaction of Ras with RaIGDS , 1998, Nature Structural Biology.

[10]  M. Beckerle,et al.  LIM domains of cysteine-rich protein 1 (CRP1) are essential for its zyxin-binding function. , 1998, The Biochemical journal.

[11]  G. Prestwich,et al.  The C2 Domains of Rabphilin3A Specifically Bind Phosphatidylinositol 4,5-Bisphosphate Containing Vesicles in a Ca2+-dependent Manner , 1998, The Journal of Biological Chemistry.

[12]  T. Südhof,et al.  RAB3 and synaptotagmin: the yin and yang of synaptic membrane fusion. , 1998, Annual review of neuroscience.

[13]  S R Sprang,et al.  Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. , 1997, Science.

[14]  S. Sprang,et al.  Crystal structure of the adenylyl cyclase activator Gsalpha. , 1997, Science.

[15]  S R Sprang,et al.  G proteins, effectors and GAPs: structure and mechanism. , 1997, Current opinion in structural biology.

[16]  N. Ozaki,et al.  Noc2, a Putative Zinc Finger Protein Involved in Exocytosis in Endocrine Cells* , 1997, The Journal of Biological Chemistry.

[17]  Thomas C. Südhof,et al.  Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion , 1997, Nature.

[18]  Robert C. Malenka,et al.  Rab3A is essential for mossy fibre long-term potentiation in the hippocampus , 1997, Nature.

[19]  M. Zerial,et al.  The diversity of Rab proteins in vesicle transport. , 1997, Current opinion in cell biology.

[20]  W. Rutter,et al.  Transcriptional synergy between LIM-homeodomain proteins and basic helix-loop-helix proteins: the LIM2 domain determines specificity , 1997, Molecular and cellular biology.

[21]  T. Südhof,et al.  The small GTP-binding protein Rab3A regulates a late step in synaptic vesicle fusion , 1997, Nature.

[22]  R M Esnouf,et al.  An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. , 1997, Journal of molecular graphics & modelling.

[23]  M. Zerial,et al.  Rab7: NMR and kinetics analysis of intact and C‐terminal truncated constructs , 1997, Proteins.

[24]  A. Mayer,et al.  Docking of Yeast Vacuoles Is Catalyzed by the Ras-like GTPase Ypt7p after Symmetric Priming by Sec18p (NSF) , 1997, The Journal of cell biology.

[25]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[26]  S R Sprang,et al.  G protein mechanisms: insights from structural analysis. , 1997, Annual review of biochemistry.

[27]  T. Sasaki,et al.  Physical and Functional Interaction of Rabphilin-3A with α-Actinin* , 1996, Journal of Biological Chemistry.

[28]  I. Macara,et al.  Role of the Rab3A-binding domain in targeting of rabphilin-3A to vesicle membranes of PC12 cells , 1996, Molecular and cellular biology.

[29]  H. Mott,et al.  The solution structure of the Raf-1 cysteine-rich domain: a novel ras and phospholipid binding site. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[30]  J. H. Chou,et al.  Rab3 reversibly recruits rabphilin to synaptic vesicles by a mechanism analogous to raf recruitment by ras. , 1996, The EMBO journal.

[31]  H. A. Louis,et al.  Structure of the cysteine-rich intestinal protein, CRIP. , 1996, Journal of molecular biology.

[32]  A T Brünger,et al.  Direct Observation of Protein Solvation and Discrete Disorder with Experimental Crystallographic Phases , 1996, Science.

[33]  S. Pfeffer Transport vesicle docking: SNAREs and associates. , 1996, Annual review of cell and developmental biology.

[34]  J. Gibrat,et al.  GOR method for predicting protein secondary structure from amino acid sequence. , 1996, Methods in enzymology.

[35]  G. Gill,et al.  The enigma of LIM domains. , 1995, Structure.

[36]  A. Wittinghofer,et al.  The 2.2 Å crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with RaplA and a GTP analogue , 1995, Nature.

[37]  C. Der,et al.  Two Distinct Raf Domains Mediate Interaction with Ras (*) , 1995, The Journal of Biological Chemistry.

[38]  S. Sprang,et al.  Structure of the first C2 domain of synaptotagmin I: A novel Ca2+/phospholipid-binding fold , 1995, Cell.

[39]  T. Sudhof,et al.  Phosphorylation of rabphilin-3A by Ca2+/calmodulin- and cAMP-dependent protein kinases in vitro , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  T. Sasaki,et al.  Phosphorylation of Rabphilin-3A by calmodulin-dependent protein kinase II. , 1994, Biochemical and biophysical research communications.

[41]  M. Beckerle,et al.  The LIM domain is a modular protein-binding interface , 1994, Cell.

[42]  A T Brünger,et al.  Protein hydration observed by X-ray diffraction. Solvation properties of penicillopepsin and neuraminidase crystal structures. , 1994, Journal of molecular biology.

[43]  T. Südhof,et al.  Synaptic targeting of rabphilin-3A, a synaptic vesicle Ca2+/phospholipid-binding protein, depends on rab3A/3C , 1994, Neuron.

[44]  J. Rothman,et al.  A rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles , 1994, Cell.

[45]  S. Pfeffer Rab GTPases: master regulators of membrane trafficking. , 1994, Current opinion in cell biology.

[46]  A. Brünger,et al.  Torsion angle dynamics: Reduced variable conformational sampling enhances crystallographic structure refinement , 1994, Proteins.

[47]  H. Erickson,et al.  Crystallization of a fragment of human fibronectin: Introduction of methionine by site‐directed mutagenesis to allow phasing via selenomethionine , 1994, Proteins.

[48]  T. Südhof,et al.  Rab proteins in regulated exocytosis. , 1994, Trends in biochemical sciences.

[49]  A Valencia,et al.  Distinct structural elements of rab5 define its functional specificity. , 1994, The EMBO journal.

[50]  W. Balch,et al.  GTPases: multifunctional molecular switches regulating vesicular traffic. , 1994, Annual review of biochemistry.

[51]  K. Kaibuchi,et al.  Two functionally different domains of rabphilin-3A, Rab3A p25/smg p25A-binding and phospholipid- and Ca(2+)-binding domains. , 1993, The Journal of biological chemistry.

[52]  Mark S. Boguski,et al.  Proteins regulating Ras and its relatives , 1993, Nature.

[53]  M. Zerial,et al.  Rab proteins and the road maps for intracellular transport , 1993, Neuron.

[54]  C. Sander,et al.  Protein structure comparison by alignment of distance matrices. , 1993, Journal of molecular biology.

[55]  M. Marshall,et al.  The effector interactions of p21ras. , 1993, Trends in biochemical sciences.

[56]  F. McCormick,et al.  Structural requirements for the interaction of p21ras with GAP, exchange factors, and its biological effector target. , 1993, The Journal of biological chemistry.

[57]  P. Brennwald,et al.  Interactions of three domains distinguishing the Ras-related GTP-binding proteins Ypt1 and Sec4 , 1993, Nature.

[58]  K. Kaibuchi,et al.  Rabphilin-3A, a putative target protein for smg p25A/rab3A p25 small GTP-binding protein related to synaptotagmin , 1993, Molecular and cellular biology.

[59]  J. Marsh,et al.  The GTPase superfamily , 1993 .

[60]  P. Novick,et al.  The role of GTP-binding proteins in transport along the exocytic pathway. , 1993, Annual review of cell biology.

[61]  H. Hamm,et al.  A site on rod G protein alpha subunit that mediates effector activation. , 1992, Science.

[62]  S. Kim,et al.  X-ray crystal structures of transforming p21 ras mutants suggest a transition-state stabilization mechanism for GTP hydrolysis. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[63]  H. Bourne,et al.  Identification of effector-activating residues of Gsα , 1992, Cell.

[64]  H. Bourne,et al.  Identification of effector-activating residues of Gs alpha. , 1992, Cell.

[65]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[66]  M. Zerial,et al.  Hypervariable C-termmal domain of rab proteins acts as a targeting signal , 1991, Nature.

[67]  W. Hendrickson Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. , 1991, Science.

[68]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[69]  M. Gelb,et al.  C terminus of the small GTP-binding protein smg p25A contains two geranylgeranylated cysteine residues and a methyl ester. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[70]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[71]  J. Dixon,et al.  Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. , 1991, Analytical biochemistry.

[72]  Frank McCormick,et al.  The GTPase superfamily: conserved structure and molecular mechanism , 1991, Nature.

[73]  S H Kim,et al.  Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. , 1992, Science.

[74]  W. Kabsch,et al.  Refined crystal structure of the triphosphate conformation of H‐ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. , 1990, The EMBO journal.

[75]  S. Kim,et al.  Crystal structure of an active form of RAS protein, a complex of a GTP analog and the HRAS p21 catalytic domain. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[76]  T. Südhof,et al.  rab3 is a small GTP-binding protein exclusively localized to synaptic vesicles. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[77]  T. Sasaki,et al.  Purification and characterization from bovine brain cytosol of a protein that inhibits the dissociation of GDP from and the subsequent binding of GTP to smg p25A, a ras p21-like GTP-binding protein. , 1990, The Journal of biological chemistry.

[78]  Peter Main,et al.  Histogram matching as a new density modification technique for phase refinement and extension of protein molecules , 1990 .

[79]  S. Kim,et al.  Structure of ras proteins. , 1989, Science.

[80]  C. Der,et al.  Biological and biochemical properties of human ras H genes mutated at codon 61 , 1986, Cell.

[81]  G A Petsko,et al.  Aromatic-aromatic interaction: a mechanism of protein structure stabilization. , 1985, Science.

[82]  B. C. Wang Resolution of phase ambiguity in macromolecular crystallography. , 1985, Methods in enzymology.

[83]  W. Hendrickson Stereochemically restrained refinement of macromolecular structures. , 1985, Methods in enzymology.

[84]  Keith O. Hodgson,et al.  The use of anomalous scattering effects to phase diffraction patterns from macromolecules , 1980 .

[85]  P. Wangikar,et al.  Protein Structure Comparison by Geometric Techniques , 2022 .