Mechanical behavior of nanocrystalline Cu and Pd

This report gives results of a study of the bulk mechanical properties of samples of nanocrystalline Cu and Pd consolidated from powders prepared by inert gas condensation. Fourier analysis x-ray diffraction techniques, used to determine average grain size and mean lattice strains of the as-consolidated samples, show grain sizes in the range of 3–50 nm and lattice strains ranging from 0.02–3%. Sample densities range from 97–72% of the density of a coarse-grained standard. Microhardness of the nanocrystalline samples exceeds that of annealed, coarse-grained samples by a factor of 2–5, despite indications that sample porosity reduces hardness values below the ultimate value. Uniaxial tensile strength of the nanocrystalline samples is similarly elevated above the value of the coarse-grained standard samples. Restrictions on dislocation generation and mobility imposed by ultrafine grain size are believed to be the dominant factor in raising strength. Residual stress may also play a role. Room temperature diffusional creep, predicted to be appreciable in nanocrystalline samples, was not found. Instead, samples appear to show logarithmic creep that is much smaller than the predicted Coble creep.

[1]  R. Birringer,et al.  Diffusion and Low Temperature Deformation by Diffusional Creep of Nanocrystalline Materials , 1991 .

[2]  Y. Ishida,et al.  HREM-studies of the microstructure of nanocrystalline palladium , 1990 .

[3]  J. Weertman,et al.  Microhardness of nanocrystalline palladium and copper produced by inert-gas condensation , 1989 .

[4]  A. Rosen,et al.  On the validity of the hall-petch relationship in nanocrystalline materials , 1989 .

[5]  R. Siegel,et al.  Raman spectroscopy of nanophase TiO_2 , 1989 .

[6]  G. Pharr,et al.  Nanoindentation of silver-relations between hardness and dislocation structure , 1989 .

[7]  Richard W. Siegel,et al.  Synthesis, characterization, and properties of nanophase TiO_2 , 1988 .

[8]  R. Birringer,et al.  Ceramics ductile at low temperature , 1987, Nature.

[9]  Rupp,et al.  Enhanced specific-heat-capacity (cp) measurements (150-300 K) of nanometer-sized crystalline materials. , 1987, Physical review. B, Condensed matter.

[10]  Zhu,et al.  X-ray diffraction studies of the structure of nanometer-sized crystalline materials. , 1987, Physical review. B, Condensed matter.

[11]  R. Birringer,et al.  Diffusion in nanocrystalline material , 1987 .

[12]  R. Birringer,et al.  Investigation of nanocrystalline iron materials by Mössbauer spectroscopy , 1987 .

[13]  R. Birringer,et al.  Nanocrystalline materials an approach to a novel solid structure with gas-like disorder? , 1984 .

[14]  R. K. Nandi,et al.  Single‐peak methods for Fourier analysis of peak shapes , 1984 .

[15]  Marc A. Meyers,et al.  Mechanical metallurgy : principles and applications , 1983 .

[16]  E. J. Mittemeijer,et al.  The determination of crystallite-size and lattice-strain parameters in conjunction with the profile-refinement method for the determination of crystal structures , 1983 .

[17]  N. Hansen,et al.  The Strain and Grain Size Dependence of the Flow Stress of Copper , 1982 .

[18]  R. Buhrman,et al.  Ultrafine metal particles , 1976 .

[19]  A. Thompson Yielding in nickel as a function of grain or cell size , 1975 .

[20]  Anthony W. Thompson,et al.  The dependence of polycrystal work hardening on grain size , 1973 .

[21]  K. E. Easterling,et al.  THE ROLE OF SURFACE ENERGY AND POWDER GEOMETRY IN POWDER COMPACTION , 1973 .

[22]  J. Hirth The influence of grain boundaries on mechanical properties , 1972 .

[23]  Robert L. Coble,et al.  A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials , 1963 .

[24]  E. Hall,et al.  The Deformation and Ageing of Mild Steel: III Discussion of Results , 1951 .

[25]  D. Tabor Hardness of Metals , 1937, Nature.

[26]  J. Weertman,et al.  Tensile strength and creep properties of nanocrystalline palladium , 1990 .

[27]  J. Eastman,et al.  Grain boundaries in nanophase palladium: High resolution electron microscopy and image simulation☆ , 1990 .

[28]  B. Kear,et al.  Multicomponent ultrafine microstructures , 1989 .

[29]  A. Gellman,et al.  Interfaces between polymers, metals, and ceramics , 1989 .

[30]  W. Johnson,et al.  Structural and thermodynamic properties of heavily mechanically deformed Ru and AlRu , 1989 .

[31]  R. Marzke,et al.  Characterization of Pt microcrystals using high resolution electron microscopy , 1986 .

[32]  R. German Powder metallurgy science , 1984 .

[33]  T. N. Baker Yield, flow and fracture of polycrystals , 1983 .

[34]  E. Gutmanas,et al.  Cold sintering under high pressure , 1979 .

[35]  Hellmut F. Fischmeister,et al.  Particle Deformation and Sliding During Compaction of Spherical Powders: A Study by Quantitative Metallography , 1978 .

[36]  J. Cohen,et al.  Diff raction f rom Materials , 2006 .

[37]  F. Hauser,et al.  Deformation and Fracture Mechanics of Engineering Materials , 1976 .

[38]  R. C. Weast Handbook of chemistry and physics , 1973 .

[39]  B. Warren,et al.  X-Ray Diffraction , 2014 .

[40]  André Guinier,et al.  X-ray Crystallography. (Book Reviews: X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies) , 1963 .