Ab Initio Quantum Monte Carlo Simulation of the Warm Dense Electron Gas in the Thermodynamic Limit.

We perform ab initio quantum Monte Carlo (QMC) simulations of the warm dense uniform electron gas in the thermodynamic limit. By combining QMC data with the linear response theory, we are able to remove finite-size errors from the potential energy over the substantial parts of the warm dense regime, overcoming the deficiencies of the existing finite-size corrections by Brown et al. [Phys. Rev. Lett. 110, 146405 (2013)]. Extensive new QMC results for up to N=1000 electrons enable us to compute the potential energy V and the exchange-correlation free energy F_{xc} of the macroscopic electron gas with an unprecedented accuracy of |ΔV|/|V|,|ΔF_{xc}|/|F|_{xc}∼10^{-3}. A comparison of our new data to the recent parametrization of F_{xc} by Karasiev et al. [Phys. Rev. Lett. 112, 076403 (2014)] reveals significant deviations to the latter.

[1]  Foulkes,et al.  Finite-size effects and Coulomb interactions in quantum Monte Carlo calculations for homogeneous systems with periodic boundary conditions. , 1996, Physical review. B, Condensed matter.

[2]  Pierre-François Loos,et al.  The uniform electron gas , 2016, 1601.03544.

[3]  Burkhard Militzer,et al.  Development of Path Integral Monte Carlo Simulations with Localized Nodal Surfaces for Second-Row Elements. , 2015, Physical review letters.

[4]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[5]  A. Sorouri,et al.  Finite-size errors in continuum quantum Monte Carlo calculations , 2008, 0806.0957.

[6]  A. Rajagopal,et al.  Exchange-correlation potential for inhomogeneous electron systems at finite temperatures , 1980 .

[7]  B. Militzer,et al.  All-electron path integral Monte Carlo simulations of warm dense matter: application to water and carbon plasmas. , 2012, Physical review letters.

[8]  D. Ceperley,et al.  Path-integral Monte Carlo simulation of the warm dense homogeneous electron gas. , 2012, Physical review letters.

[9]  Kieron Burke,et al.  Thermal Density Functional Theory: Time-Dependent Linear Response and Approximate Functionals from the Fluctuation-Dissipation Theorem. , 2015, Physical review letters.

[10]  S. Dutta,et al.  Classical representation of a quantum system at equilibrium: Applications , 2012, 1211.5185.

[11]  N. Crouseilles,et al.  Quantum hydrodynamic model for the nonlinear electron dynamics in thin metal films , 2008 .

[12]  M. Bonitz,et al.  Permutation blocking path integral Monte Carlo approach to the uniform electron gas at finite temperature. , 2015, The Journal of chemical physics.

[13]  Connor T. Hann,et al.  Ab initio quantum Monte Carlo simulations of the uniform electron gas without fixed nodes: The unpolarized case , 2016, 1601.04977.

[14]  N. S. Blunt,et al.  Accurate Exchange-Correlation Energies for the Warm Dense Electron Gas. , 2016, Physical review letters.

[15]  N. S. Barnett,et al.  Private communication , 1969 .

[16]  White,et al.  Sign problem in the numerical simulation of many-electron systems. , 1990, Physical review. B, Condensed matter.

[17]  M. Bonitz,et al.  Towards ab Initio Thermodynamics of the Electron Gas at Strong Degeneracy , 2014, 1409.6534.

[18]  J. Daligault,et al.  Gradient corrections to the exchange-correlation free energy , 2014, 1408.1380.

[19]  F. Graziani,et al.  Quantum Hydrodynamics for Plasmas – a Thomas‐Fermi Theory Perspective , 2015, 1503.04037.

[20]  M. Dharma-wardana,et al.  Exchange and correlation potentials for electron-ion systems at finite temperatures , 1984 .

[21]  R. Mcbride,et al.  Understanding fuel magnetization and mix using secondary nuclear reactions in magneto-inertial fusion. , 2014, Physical review letters.

[22]  Markus Holzmann,et al.  Finite-size error in many-body simulations with long-range interactions. , 2006, Physical review letters.

[23]  D M Ceperley,et al.  Twist-averaged boundary conditions in continuum quantum Monte Carlo algorithms. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  N. S. Blunt,et al.  Density-matrix quantum Monte Carlo method , 2013, 1303.5007.

[25]  Travis Sjostrom,et al.  Uniform electron gas at finite temperatures , 2013, 1308.2021.

[26]  Burkhard Militzer,et al.  First-principles simulations and shock Hugoniot calculations of warm dense neon , 2014 .

[27]  M. Bonitz,et al.  Ab initio quantum Monte Carlo simulations of the uniform electron gas without fixed nodes , 2015, 1511.03598.

[28]  W. Kraeft,et al.  Equation of state for weakly coupled quantum plasmas. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  D. Ceperley Fermion nodes , 1991 .

[30]  G. Mazzola,et al.  Unexpectedly high pressure for molecular dissociation in liquid hydrogen by electronic simulation , 2014, Nature Communications.

[31]  B. Militzer,et al.  A Massive Core in Jupiter Predicted from First-Principles Simulations , 2008, 0807.4264.

[32]  W. Kraeft,et al.  Quantum statistics of nonideal plasmas , 2005 .

[33]  Travis Sjostrom,et al.  Accurate homogeneous electron gas exchange-correlation free energy for local spin-density calculations. , 2014, Physical review letters.

[34]  D. Ceperley Ground state of the fermion one-component plasma: A Monte Carlo study in two and three dimensions , 1978 .

[35]  J. D. Moody,et al.  Inertially confined fusion plasmas dominated by alpha-particle self-heating , 2016, Nature Physics.

[36]  M. W. Chandre Dharma-wardana,et al.  Current Issues in Finite-T Density-Functional Theory and Warm-Correlated Matter , 2016, Comput..

[37]  M. Desjarlais,et al.  Probing the interiors of the ice giants: shock compression of water to 700 GPa and 3.8 g/cm³. , 2011, Physical review letters.

[38]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[39]  M. Motta,et al.  Imaginary time density-density correlations for two-dimensional electron gases at high density. , 2015, The Journal of chemical physics.

[40]  R. J. Dwayne Miller,et al.  The Formation of Warm Dense Matter: Experimental Evidence for Electronic Bond Hardening in Gold , 2009, Science.

[41]  M. Desjarlais,et al.  Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium , 2015, Science.

[42]  S. Ichimaru,et al.  Thermodynamics and Correlational Properties of Finite-Temperature Electron Liquids in the Singwi-Tosi-Land-Sjolander Approximation , 1986 .

[43]  Perrot,et al.  Simple classical mapping of the spin-polarized quantum electron gas: distribution functions and local-field corrections , 1999, Physical review letters.

[44]  N. Blunt,et al.  Interaction picture density matrix quantum Monte Carlo. , 2015, The Journal of chemical physics.

[45]  Matthias Troyer,et al.  Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations , 2004, Physical review letters.

[46]  Kieron Burke,et al.  Exact conditions on the temperature dependence of density functionals , 2015, 1511.02194.

[47]  S. Trickey,et al.  Importance of finite-temperature exchange correlation for warm dense matter calculations. , 2016, Physical review. E.

[48]  Shiwei Zhang,et al.  Finite-size correction in many-body electronic structure calculations. , 2007, Physical review letters.

[49]  M. Bonitz,et al.  Permutation blocking path integral Monte Carlo: a highly efficient approach to the simulation of strongly degenerate non-ideal fermions , 2015, 1504.03859.

[50]  M. Bonitz,et al.  Ab Initio Thermodynamic Results for the Degenerate Electron Gas at Finite Temperature. , 2015, Physical review letters.

[51]  James W. Dufty,et al.  Configuration Path Integral Monte Carlo , 2011 .

[52]  D. T. Michel,et al.  Gigabar spherical shock generation on the OMEGA laser. , 2015, Physical review letters.