KECK/MOSFIRE SPECTROSCOPY OF z = 7–8 GALAXIES: Lyα EMISSION FROM A GALAXY AT z = 7.66

We report the results from some of the deepest Keck/Multi-Object Spectrometer For Infra-Red Exploration data yet obtained for candidate z gsim 7 galaxies. Our data show one significant line detection with 6.5σ significance in our combined 10 hr of integration which is independently detected on more than one night, thus ruling out the possibility that the detection is spurious. The asymmetric line profile and non-detection in the optical bands strongly imply that the detected line is Lyα emission from a galaxy at z(Lyα) = 7.6637 ± 0.0011, making it the fourth spectroscopically confirmed galaxy via Lyα at z > 7.5. This galaxy is bright in the rest-frame ultraviolet (UV; M_(UV) ~ −21.2) with a moderately blue UV slope β=-2.2_(-0.2)^(+0.3), and exhibits a rest-frame Lyα equivalent width of EW(Lyα) ~ 15.6_(-3.6)^(+5.9) A. The non-detection of the 11 other z ~ 7–8 galaxies in our long 10 hr integration, reaching a median 5σ sensitivity of 28 A in the rest-frame EW(Lyα), implies a 1.3σ deviation from the null hypothesis of a non-evolving distribution in the rest-frame EW(Lyα) between 3 6.5, which may signal the evolving neutral fraction in the intergalactic medium at the end of the reionization epoch, although our weak evidence suggests the need for a larger statistical sample to allow for a more robust conclusion.

[1]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[2]  M. Giavalisco,et al.  A galaxy rapidly forming stars 700 million years after the Big Bang at redshift 7.51 , 2013, Nature.

[3]  Michele Cirasuolo,et al.  THE 2012 HUBBLE ULTRA DEEP FIELD (UDF12): OBSERVATIONAL OVERVIEW , 2012, 1212.1448.

[4]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[5]  D. Schaerer,et al.  Eight per cent leakage of Lyman continuum photons from a compact, star-forming dwarf galaxy , 2016, Nature.

[6]  R. Bouwens,et al.  z ≳ 7 GALAXIES WITH RED SPITZER/IRAC [3.6]–[4.5] COLORS IN THE FULL CANDELS DATA SET: THE BRIGHTEST-KNOWN GALAXIES AT z ∼ 7–9 AND A PROBABLE SPECTROSCOPIC CONFIRMATION AT z = 7.48 , 2015, 1506.00854.

[7]  C. Conselice,et al.  CANDELS: THE EVOLUTION OF GALAXY REST-FRAME ULTRAVIOLET COLORS FROM z = 8 TO 4 , 2011, 1110.3785.

[8]  M. Ouchi,et al.  KECK SPECTROSCOPY OF FAINT 3>z>7 LYMAN BREAK GALAXIES: A HIGH FRACTION OF LINE EMITTERS AT REDSHIFT SIX , 2010, 1009.5471.

[9]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[10]  J. Bolton,et al.  On the rapid demise of Ly α emitters at redshift z ≳ 7 due to the increasing incidence of optically thick absorption systems , 2012, 1208.4417.

[11]  L. Bradley,et al.  INFERENCES ON THE DISTRIBUTION OF Lyα EMISSION OF z ∼ 7 AND z ∼ 8 GALAXIES , 2011 .

[12]  R. Ellis,et al.  KECK SPECTROSCOPY OF FAINT 3 < z < 8 LYMAN BREAK GALAXIES: EVIDENCE FOR A DECLINING FRACTION OF EMISSION LINE SOURCES IN THE REDSHIFT RANGE 6 < z < 8 , 2011, 1107.1261.

[13]  F. Castander,et al.  The Multiwavelength Survey by Yale-Chile (MUSYC): Survey Design and Deep Public UBVRIz' Images and Catalogs of the Extended Hubble Deep Field-South* , 2005, astro-ph/0509202.

[14]  A. Fontana,et al.  A CRITICAL ASSESSMENT OF PHOTOMETRIC REDSHIFT METHODS: A CANDELS INVESTIGATION , 2013, 1308.5353.

[15]  R. Kurucz ATLAS9 Stellar Atmosphere Programs and 2 km/s grid. , 1993 .

[16]  N. Konidaris,et al.  LINE-EMITTING GALAXIES BEYOND A REDSHIFT OF 7: AN IMPROVED METHOD FOR ESTIMATING THE EVOLVING NEUTRALITY OF THE INTERGALACTIC MEDIUM , 2014, 1404.4632.

[17]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[18]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[19]  Steward Observatory,et al.  The Hawk-I UDS and GOODS Survey (HUGS): Survey design and deep K-band number counts , 2014, 1409.7082.

[20]  M. Giavalisco,et al.  The Great Observatories Origins Deep Survey: Initial results from optical and near-infrared imaging , 2003, astro-ph/0309105.

[21]  N. Smirnov Table for Estimating the Goodness of Fit of Empirical Distributions , 1948 .

[22]  A. Pradhan,et al.  [O ii] line ratios , 2005, astro-ph/0510099.

[23]  A. Koekemoer,et al.  RAPID DECLINE OF Lyα EMISSION TOWARD THE REIONIZATION ERA , 2014, 1405.4869.

[24]  C. Steidel,et al.  THE STRUCTURE AND KINEMATICS OF THE CIRCUMGALACTIC MEDIUM FROM FAR-ULTRAVIOLET SPECTRA OF z ≃ 2–3 GALAXIES , 2010, 1003.0679.

[25]  E. Vanzella,et al.  Can the intergalactic medium cause a rapid drop in Lyα emission at z > 6? , 2014, 1406.6373.

[26]  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[27]  A. Fontana,et al.  SPECTROSCOPIC CONFIRMATION OF TWO LYMAN BREAK GALAXIES AT REDSHIFT BEYOND 7 , 2010, 1011.5500.

[28]  Richard S. Ellis,et al.  Keck spectroscopy of faint 3 < z < 7 Lyman break galaxies – I. New constraints on cosmic reionization from the luminosity and redshift-dependent fraction of Lyman α emission , 2010, 1003.5244.

[29]  R. Ellis,et al.  A new multifield determination of the galaxy luminosity function at z = 7-9 incorporating the 2012 Hubble Ultra-Deep Field imaging , 2012, 1212.5222.

[30]  Stefano Casertano,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3754.

[31]  Hooshang Nayyeri,et al.  SPECTROSCOPIC CONFIRMATION OF THREE z-DROPOUT GALAXIES AT z = 6.844–7.213: DEMOGRAPHICS OF Lyα EMISSION IN z ∼ 7 GALAXIES , 2011, 1107.3159.

[32]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[33]  S. Finkelstein,et al.  Observational Searches for Star-Forming Galaxies at z > 6 , 2015, Publications of the Astronomical Society of Australia.

[34]  Maximilian Fabricius,et al.  THE HETDEX PILOT SURVEY. V. THE PHYSICAL ORIGIN OF Lyα EMITTERS PROBED BY NEAR-INFRARED SPECTROSCOPY , 2014, 1406.4503.

[35]  Z. Haiman,et al.  Evolution in the escape fraction of ionizing photons and the decline in strong Lyα emission from z > 6 galaxies , 2014, 1401.7676.

[36]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[37]  Sean Adkins,et al.  MOSFIRE, the multi-object spectrometer for infra-red exploration at the Keck Observatory , 2012, Other Conferences.

[38]  M. Sullivan,et al.  THE ASSEMBLY HISTORY OF DISK GALAXIES. II. PROBING THE EMERGING TULLY–FISHER RELATION DURING 1 < z < 1.7 , 2012, 1201.4386.

[39]  A. Fontana,et al.  The lack of intense Lyman ~ alpha in ultradeep spectra of z = 7 candidates in GOODS-S : imprint of reionization ? , 2017 .

[40]  M. Franx,et al.  A SPECTROSCOPIC REDSHIFT MEASUREMENT FOR A LUMINOUS LYMAN BREAK GALAXY AT z = 7.730 USING KECK/MOSFIRE , 2015, 1502.05399.

[41]  A. Fontana,et al.  SPECTROSCOPIC CONFIRMATION OF z ∼ 7 LYMAN BREAK GALAXIES: PROBING THE EARLIEST GALAXIES AND THE EPOCH OF REIONIZATION , 2011, 1107.1376.

[42]  O. Ilbert,et al.  The Interstellar Medium In Galaxies Seen A Billion Years After The Big Bang , 2015, 1503.07596.

[43]  R. Bouwens,et al.  Lyα EMISSION FROM A LUMINOUS z = 8.68 GALAXY: IMPLICATIONS FOR GALAXIES AS TRACERS OF COSMIC REIONIZATION , 2015, 1507.02679.

[44]  A dusty, normal galaxy in the epoch of reionization , 2015, Nature.

[45]  Guillermo Barro,et al.  THE TEAM KECK REDSHIFT SURVEY 2: MOSFIRE SPECTROSCOPY OF THE GOODS-NORTH FIELD , 2015, 1509.07172.

[46]  Robert H. Becker,et al.  Constraining the Evolution of the Ionizing Background and the Epoch of Reionization with z ∼ 6 Quasars. II. A Sample of 19 Quasars , 2005, astro-ph/0512082.

[47]  A. Mesinger,et al.  The detectability of Lyα emission from galaxies during the epoch of reionization , 2011, 1101.5160.

[48]  R. Bouwens,et al.  z ∼ 7 GALAXY CANDIDATES FROM NICMOS OBSERVATIONS OVER THE HDF-SOUTH AND THE CDF-SOUTH AND HDF-NORTH GOODS FIELDS , 2010, 1003.1706.

[49]  G. Zamorani,et al.  HUBBLE IMAGING OF THE IONIZING RADIATION FROM A STAR-FORMING GALAXY AT Z = 3.2 WITH , 2016, 1602.00688.

[50]  M. Giavalisco,et al.  NEW OBSERVATIONS OF z ∼ 7 GALAXIES: EVIDENCE FOR A PATCHY REIONIZATION , 2014, 1403.5466.

[51]  A. Fontana,et al.  THE LACK OF INTENSE Lyα IN ULTRADEEP SPECTRA OF z = 7 CANDIDATES IN GOODS-S: IMPRINT OF REIONIZATION? , 2010, 1010.2754.

[52]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[53]  A. Fontana,et al.  THE EVOLUTION OF THE GALAXY STELLAR MASS FUNCTION AT z = 4–8: A STEEPENING LOW-MASS-END SLOPE WITH INCREASING REDSHIFT , 2015, 1507.05636.

[54]  Nimish Hathi,et al.  THE EVOLUTION OF THE GALAXY REST-FRAME ULTRAVIOLET LUMINOSITY FUNCTION OVER THE FIRST TWO BILLION YEARS , 2014, 1410.5439.

[55]  K. Shimasaku,et al.  THE FIRST SYSTEMATIC SURVEY FOR Lyα EMITTERS AT z = 7.3 WITH RED-SENSITIVE SUBARU/SUPRIME-CAM , 2011, 1112.3997.

[56]  O. Ilbert,et al.  Galaxies at redshifts 5 to 6 with systematically low dust content and high [C ii] emission , 2015, Nature.

[57]  Bruce A. Peterson,et al.  On the Density of Neutral Hydrogen in Intergalactic Space , 1965 .

[58]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.