Non-Galerkin Multigrid Based on Sparsified Smoothed Aggregation
暂无分享,去创建一个
[1] Richard Szeliski,et al. Multigrid and multilevel preconditioners for computational photography , 2011, ACM Trans. Graph..
[2] Hans De Sterck,et al. Distance‐two interpolation for parallel algebraic multigrid , 2007, Numer. Linear Algebra Appl..
[3] D FalgoutRobert. An Introduction to Algebraic Multigrid , 2006 .
[4] Ray S. Tuminaro,et al. A New Petrov--Galerkin Smoothed Aggregation Preconditioner for Nonsymmetric Linear Systems , 2008, SIAM J. Sci. Comput..
[5] Cornelis W. Oosterlee,et al. Krylov Subspace Acceleration of Nonlinear Multigrid with Application to Recirculating Flows , 1999, SIAM J. Sci. Comput..
[6] Ulrike Meier Yang,et al. Parallel Algebraic Multigrid Methods — High Performance Preconditioners , 2006 .
[7] Todd Gamblin,et al. Scaling Algebraic Multigrid Solvers: On the Road to Exascale , 2010, CHPC.
[8] R.D. Falgout,et al. An Introduction to Algebraic Multigrid Computing , 2006, Computing in Science & Engineering.
[9] Irad Yavneh,et al. Why Multigrid Methods Are So Efficient , 2006, Computing in Science & Engineering.
[10] Irad Yavneh,et al. Fast multilevel methods for Markov chains , 2011, Numer. Linear Algebra Appl..
[11] Edmond Chow,et al. A Survey of Parallelization Techniques for Multigrid Solvers , 2006, Parallel Processing for Scientific Computing.
[12] Thomas A. Manteuffel,et al. An energy‐based AMG coarsening strategy , 2006, Numer. Linear Algebra Appl..
[13] I. Yavneh,et al. ALGEBRAIC COLLOCATION COARSE APPROXIMATION ( ACCA ) MULTIGRID , 2012 .
[14] Y. Notay. An aggregation-based algebraic multigrid method , 2010 .
[15] Thomas A. Manteuffel,et al. Adaptive Algebraic Multigrid , 2005, SIAM J. Sci. Comput..
[16] Jinchao Xu,et al. On an energy minimizing basis for algebraic multigrid methods , 2004 .
[17] Achi Brandt,et al. Fast Multigrid Solution of the Advection Problem with Closed Characteristics , 1998, SIAM J. Sci. Comput..
[18] Ulrike Meier Yang,et al. On long‐range interpolation operators for aggressive coarsening , 2009, Numer. Linear Algebra Appl..
[19] Thomas A. Manteuffel,et al. Towards Adaptive Smoothed Aggregation (AlphaSA) for Nonsymmetric Problems , 2010, SIAM J. Sci. Comput..
[20] Martin Schulz,et al. Challenges of Scaling Algebraic Multigrid Across Modern Multicore Architectures , 2011, 2011 IEEE International Parallel & Distributed Processing Symposium.
[21] Irad Yavneh,et al. On-the-Fly Adaptive Smoothed Aggregation Multigrid for Markov Chains , 2011, SIAM J. Sci. Comput..
[22] Jacob B. Schroder,et al. Smoothed aggregation solvers for anisotropic diffusion , 2012, Numer. Linear Algebra Appl..
[23] S. McCormick,et al. Towards Adaptive Smoothed Aggregation (αsa) for Nonsymmetric Problems * , 2022 .
[24] Irad Yavneh,et al. Square and stretch multigrid for stochastic matrix eigenproblems , 2010, Numer. Linear Algebra Appl..
[25] Radim Blaheta,et al. A multilevel method with overcorrection by aggregation for solving discrete elliptic problems , 1988 .
[26] William L. Briggs,et al. A multigrid tutorial , 1987 .
[27] Achi Brandt,et al. Bootstrap AMG , 2011, SIAM J. Sci. Comput..
[28] Irad Yavneh,et al. Aggregation-based adaptive algebraic multigrid for sparse linear systems , 2014 .
[29] Marian Brezina,et al. Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems , 2005, Computing.
[30] Oliver Bröker,et al. Sparse approximate inverse smoothers for geometric and algebraic multigrid , 2002 .
[31] K. Stuben,et al. Algebraic Multigrid (AMG) : An Introduction With Applications , 2000 .
[32] Irad Yavneh,et al. Collocation Coarse Approximation in Multigrid , 2009, SIAM J. Sci. Comput..
[33] Petr Vaněk,et al. A modification of the two-level algorithm with overcorrection , 1992 .
[34] Robert D. Falgout,et al. Multigrid Smoothers for Ultra-Parallel Computing , 2011 .
[35] Irad Yavneh,et al. Coarse-Grid Correction for Nonelliptic and Singular Perturbation Problems , 1998, SIAM J. Sci. Comput..
[36] Achi Brandt,et al. Accelerated Multigrid Convergence and High-Reynolds Recirculating Flows , 1993, SIAM J. Sci. Comput..
[37] Thomas A. Manteuffel,et al. Adaptive Smoothed Aggregation (αSA) , 2004, SIAM J. Sci. Comput..
[38] Jacob B. Schroder,et al. A General Interpolation Strategy for Algebraic Multigrid Using Energy Minimization , 2011, SIAM J. Sci. Comput..
[39] Vipin Kumar,et al. A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..
[40] Hans De Sterck,et al. Reducing Complexity in Parallel Algebraic Multigrid Preconditioners , 2004, SIAM J. Matrix Anal. Appl..
[41] S. SIAMJ.,et al. AGGREGATION-BASED ALGEBRAIC MULTIGRID FOR CONVECTION-DIFFUSION EQUATIONS∗ , 2012 .
[42] V. E. Henson,et al. BoomerAMG: a parallel algebraic multigrid solver and preconditioner , 2002 .
[43] Richard Szeliski,et al. Locally adapted hierarchical basis preconditioning , 2006, SIGGRAPH '06.
[44] Todd Gamblin,et al. Preparing Algebraic Multigrid for Exascale , 2012 .
[45] Robert D. Falgout,et al. Multigrid Smoothers for Ultraparallel Computing , 2011, SIAM J. Sci. Comput..
[46] I. Yavneh,et al. On Multigrid Solution of High-Reynolds Incompressible Entering Flows* , 1992 .
[47] Matthias Bolten,et al. Structured grid AMG with stencil-collapsing for d-level circulant matrices , 2007 .
[48] Marian Brezina,et al. Energy Optimization of Algebraic Multigrid Bases , 1998, Computing.
[49] M. SIAMJ.,et al. AGGREGATION-BASED ALGEBRAIC MULTILEVEL PRECONDITIONING∗ , 2006 .
[50] Murli M. Gupta,et al. High accuracy multigrid solution of the 3D convection-diffusion equation , 2000, Appl. Math. Comput..
[51] Petr Vanek,et al. An Aggregation Multigrid Solver for convection-diffusion problems onunstructured meshes. , 1998 .
[52] Richard Szeliski,et al. Efficient preconditioning of laplacian matrices for computer graphics , 2013, ACM Trans. Graph..
[53] Yvan Notay,et al. Aggregation-Based Algebraic Multigrid for Convection-Diffusion Equations , 2012, SIAM J. Sci. Comput..
[54] Thomas A. Manteuffel,et al. Smoothed Aggregation Multigrid for Markov Chains , 2010, SIAM J. Sci. Comput..