Non-Galerkin Multigrid Based on Sparsified Smoothed Aggregation

Algebraic multigrid (AMG) methods are known to be efficient in solving linear systems arising from the discretization of partial differential equations and other related problems. These methods employ a hierarchy of representations of the problem on successively coarser meshes. The coarse-grid operators are usually defined by (Petrov--)Galerkin coarsening, which is a projection of the original operator using the restriction and prolongation transfer operators. Therefore, these transfer operators determine the sparsity pattern and operator complexity of the multigrid hierarchy. In many scenarios the multigrid operators tend to become much denser as the coarsening progresses. Such behavior is especially problematic in parallel AMG computations, where it imposes an expensive communication overhead. In this work we present a new algebraic technique for controlling the sparsity pattern of the operators in the AMG hierarchy, independently of the choice of the restriction and prolongation. Our method is based on...

[1]  Richard Szeliski,et al.  Multigrid and multilevel preconditioners for computational photography , 2011, ACM Trans. Graph..

[2]  Hans De Sterck,et al.  Distance‐two interpolation for parallel algebraic multigrid , 2007, Numer. Linear Algebra Appl..

[3]  D FalgoutRobert An Introduction to Algebraic Multigrid , 2006 .

[4]  Ray S. Tuminaro,et al.  A New Petrov--Galerkin Smoothed Aggregation Preconditioner for Nonsymmetric Linear Systems , 2008, SIAM J. Sci. Comput..

[5]  Cornelis W. Oosterlee,et al.  Krylov Subspace Acceleration of Nonlinear Multigrid with Application to Recirculating Flows , 1999, SIAM J. Sci. Comput..

[6]  Ulrike Meier Yang,et al.  Parallel Algebraic Multigrid Methods — High Performance Preconditioners , 2006 .

[7]  Todd Gamblin,et al.  Scaling Algebraic Multigrid Solvers: On the Road to Exascale , 2010, CHPC.

[8]  R.D. Falgout,et al.  An Introduction to Algebraic Multigrid Computing , 2006, Computing in Science & Engineering.

[9]  Irad Yavneh,et al.  Why Multigrid Methods Are So Efficient , 2006, Computing in Science & Engineering.

[10]  Irad Yavneh,et al.  Fast multilevel methods for Markov chains , 2011, Numer. Linear Algebra Appl..

[11]  Edmond Chow,et al.  A Survey of Parallelization Techniques for Multigrid Solvers , 2006, Parallel Processing for Scientific Computing.

[12]  Thomas A. Manteuffel,et al.  An energy‐based AMG coarsening strategy , 2006, Numer. Linear Algebra Appl..

[13]  I. Yavneh,et al.  ALGEBRAIC COLLOCATION COARSE APPROXIMATION ( ACCA ) MULTIGRID , 2012 .

[14]  Y. Notay An aggregation-based algebraic multigrid method , 2010 .

[15]  Thomas A. Manteuffel,et al.  Adaptive Algebraic Multigrid , 2005, SIAM J. Sci. Comput..

[16]  Jinchao Xu,et al.  On an energy minimizing basis for algebraic multigrid methods , 2004 .

[17]  Achi Brandt,et al.  Fast Multigrid Solution of the Advection Problem with Closed Characteristics , 1998, SIAM J. Sci. Comput..

[18]  Ulrike Meier Yang,et al.  On long‐range interpolation operators for aggressive coarsening , 2009, Numer. Linear Algebra Appl..

[19]  Thomas A. Manteuffel,et al.  Towards Adaptive Smoothed Aggregation (AlphaSA) for Nonsymmetric Problems , 2010, SIAM J. Sci. Comput..

[20]  Martin Schulz,et al.  Challenges of Scaling Algebraic Multigrid Across Modern Multicore Architectures , 2011, 2011 IEEE International Parallel & Distributed Processing Symposium.

[21]  Irad Yavneh,et al.  On-the-Fly Adaptive Smoothed Aggregation Multigrid for Markov Chains , 2011, SIAM J. Sci. Comput..

[22]  Jacob B. Schroder,et al.  Smoothed aggregation solvers for anisotropic diffusion , 2012, Numer. Linear Algebra Appl..

[23]  S. McCormick,et al.  Towards Adaptive Smoothed Aggregation (αsa) for Nonsymmetric Problems * , 2022 .

[24]  Irad Yavneh,et al.  Square and stretch multigrid for stochastic matrix eigenproblems , 2010, Numer. Linear Algebra Appl..

[25]  Radim Blaheta,et al.  A multilevel method with overcorrection by aggregation for solving discrete elliptic problems , 1988 .

[26]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[27]  Achi Brandt,et al.  Bootstrap AMG , 2011, SIAM J. Sci. Comput..

[28]  Irad Yavneh,et al.  Aggregation-based adaptive algebraic multigrid for sparse linear systems , 2014 .

[29]  Marian Brezina,et al.  Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems , 2005, Computing.

[30]  Oliver Bröker,et al.  Sparse approximate inverse smoothers for geometric and algebraic multigrid , 2002 .

[31]  K. Stuben,et al.  Algebraic Multigrid (AMG) : An Introduction With Applications , 2000 .

[32]  Irad Yavneh,et al.  Collocation Coarse Approximation in Multigrid , 2009, SIAM J. Sci. Comput..

[33]  Petr Vaněk,et al.  A modification of the two-level algorithm with overcorrection , 1992 .

[34]  Robert D. Falgout,et al.  Multigrid Smoothers for Ultra-Parallel Computing , 2011 .

[35]  Irad Yavneh,et al.  Coarse-Grid Correction for Nonelliptic and Singular Perturbation Problems , 1998, SIAM J. Sci. Comput..

[36]  Achi Brandt,et al.  Accelerated Multigrid Convergence and High-Reynolds Recirculating Flows , 1993, SIAM J. Sci. Comput..

[37]  Thomas A. Manteuffel,et al.  Adaptive Smoothed Aggregation (αSA) , 2004, SIAM J. Sci. Comput..

[38]  Jacob B. Schroder,et al.  A General Interpolation Strategy for Algebraic Multigrid Using Energy Minimization , 2011, SIAM J. Sci. Comput..

[39]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[40]  Hans De Sterck,et al.  Reducing Complexity in Parallel Algebraic Multigrid Preconditioners , 2004, SIAM J. Matrix Anal. Appl..

[41]  S. SIAMJ.,et al.  AGGREGATION-BASED ALGEBRAIC MULTIGRID FOR CONVECTION-DIFFUSION EQUATIONS∗ , 2012 .

[42]  V. E. Henson,et al.  BoomerAMG: a parallel algebraic multigrid solver and preconditioner , 2002 .

[43]  Richard Szeliski,et al.  Locally adapted hierarchical basis preconditioning , 2006, SIGGRAPH '06.

[44]  Todd Gamblin,et al.  Preparing Algebraic Multigrid for Exascale , 2012 .

[45]  Robert D. Falgout,et al.  Multigrid Smoothers for Ultraparallel Computing , 2011, SIAM J. Sci. Comput..

[46]  I. Yavneh,et al.  On Multigrid Solution of High-Reynolds Incompressible Entering Flows* , 1992 .

[47]  Matthias Bolten,et al.  Structured grid AMG with stencil-collapsing for d-level circulant matrices , 2007 .

[48]  Marian Brezina,et al.  Energy Optimization of Algebraic Multigrid Bases , 1998, Computing.

[49]  M. SIAMJ.,et al.  AGGREGATION-BASED ALGEBRAIC MULTILEVEL PRECONDITIONING∗ , 2006 .

[50]  Murli M. Gupta,et al.  High accuracy multigrid solution of the 3D convection-diffusion equation , 2000, Appl. Math. Comput..

[51]  Petr Vanek,et al.  An Aggregation Multigrid Solver for convection-diffusion problems onunstructured meshes. , 1998 .

[52]  Richard Szeliski,et al.  Efficient preconditioning of laplacian matrices for computer graphics , 2013, ACM Trans. Graph..

[53]  Yvan Notay,et al.  Aggregation-Based Algebraic Multigrid for Convection-Diffusion Equations , 2012, SIAM J. Sci. Comput..

[54]  Thomas A. Manteuffel,et al.  Smoothed Aggregation Multigrid for Markov Chains , 2010, SIAM J. Sci. Comput..