User-centered Interactive Data Mining

While many data mining models concentrate on automation and efficiency, interactive data mining models focus on adaptive and effective communications between human users and computer systems. User views, preferences, strategies and judgments play the most important roles in human-machine interactivities, guide the selection of target knowledge representations, operations, and measurements. Practically, user views, preferences and judgments also decide strategies of abnormal situation handling, and explanations of mined patterns. In this paper, we discuss these fundamental issues

[1]  Izak Benbasat,et al.  The Use and Effects of Knowledge-Based System Explanations: Theoretical Foundations and a Framework for Empirical Evaluation , 1996, Inf. Syst. Res..

[2]  Howard J. Hamilton,et al.  Knowledge discovery and measures of interest , 2001 .

[3]  Yingxu Wang,et al.  On Cognitive Informatics , 2002, Proceedings First IEEE International Conference on Cognitive Informatics.

[4]  Yiyu Yao,et al.  Rule+exception strategies for security information analysis , 2005, IEEE Intelligent Systems.

[5]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[6]  Susan G. Hutchins,et al.  Designing Support for Intelligence Analysts , 2004 .

[7]  Carlos Bento,et al.  A Metric for Selection of the Most Promising Rules , 1998, PKDD.

[8]  Setsuo Ohsuga,et al.  Interestingness, peculiarity, and multi-database mining , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[9]  W. H. F. Barnes The Nature of Explanation , 1944, Nature.

[10]  Dong Liu,et al.  On information and knowledge representation in the brain , 2003, The Second IEEE International Conference on Cognitive Informatics, 2003. Proceedings..

[11]  Ke Wang,et al.  User-Defined Association Mining , 2001, PAKDD.

[12]  Yiyu Yao,et al.  A Decision Theoretic Framework for Approximating Concepts , 1992, Int. J. Man Mach. Stud..

[13]  Yiyu Yao,et al.  Perspectives of granular computing , 2005, 2005 IEEE International Conference on Granular Computing.

[14]  Weijia Zhou,et al.  Proceedings of the Human Factors and Ergonomics Society , 1996 .

[15]  Y. Yao,et al.  Information-Theoretic Measures for Knowledge Discovery and Data Mining , 2003 .

[16]  Jiawei Han,et al.  Profit Mining: From Patterns to Actions , 2002, EDBT.

[17]  Yiyu Yao,et al.  An Analysis of Quantitative Measures Associated with Rules , 1999, PAKDD.

[18]  Rajeev Motwani,et al.  Beyond market baskets: generalizing association rules to correlations , 1997, SIGMOD '97.

[19]  Yiyu Yao,et al.  Explanation Oriented Association Mining Using Rough Set Theory , 2003, RSFDGrC.

[20]  Xiaohua Hu,et al.  A Visualization Model of Interactive Knowledge Discovery Systems and Its Implementations , 2003, Inf. Vis..

[21]  Yingxu Wang,et al.  On autonomous computing and cognitive processes , 2004, Proceedings of the Third IEEE International Conference on Cognitive Informatics, 2004..

[22]  Shaochun Xu,et al.  Constructivist Learning During Software Development , 2007, Int. J. Cogn. Informatics Nat. Intell..

[23]  Howard J. Hamilton,et al.  Extracting Share Frequent Itemsets with Infrequent Subsets , 2003, Data Mining and Knowledge Discovery.

[24]  Yiyu Yao,et al.  Peculiarity Oriented Multi-database Mining , 1999, PKDD.

[25]  M. Kane Measurement theory. , 1980, NLN publications.

[26]  Jonathan Barzilai,et al.  On the foundations of measurement , 2001, 2001 IEEE International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat.No.01CH37236).

[27]  Wynne Hsu,et al.  Pruning and summarizing the discovered associations , 1999, KDD '99.

[28]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[29]  Jon Doyle,et al.  Doyle See Infer Choose Do Perceive Act , 2009 .

[30]  Maria Semeniuk-Polkowska,et al.  On Foundations and Applications of the Paradigm of Granular Rough Computing , 2008, Int. J. Cogn. Informatics Nat. Intell..

[31]  Yiyu Yao,et al.  Multiview intelligent data analysis based on granular computing , 2006, 2006 IEEE International Conference on Granular Computing.

[32]  S. Kotz,et al.  Correlation and dependence , 2001 .

[33]  Abraham Silberschatz,et al.  On Subjective Measures of Interestingness in Knowledge Discovery , 1995, KDD.

[34]  L. Beran,et al.  [Formal concept analysis]. , 1996, Casopis lekaru ceskych.

[35]  Ling Guan,et al.  Language Independent Recognition of Human Emotion using Artificial Neural Networks , 2008, Int. J. Cogn. Informatics Nat. Intell..

[36]  Tony T. Lee,et al.  An Infornation-Theoretic Analysis of Relational Databases—Part I: Data Dependencies and Information Metric , 1987, IEEE Transactions on Software Engineering.

[37]  Wynne Hsu,et al.  Using General Impressions to Analyze Discovered Classification Rules , 1997, KDD.

[38]  Paul Compton,et al.  Knowledge in Context: A Strategy for Expert System Maintenance , 1990, Australian Joint Conference on Artificial Intelligence.

[39]  Ben Shneiderman,et al.  Designing the User Interface: Strategies for Effective Human-Computer Interaction , 1998 .

[40]  Yiyu Yao,et al.  A Measurement-Theoretic Foundation of Rule Interestingness Evaluation , 2006, Foundations and Novel Approaches in Data Mining.

[41]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[42]  Yiyu Yao,et al.  On modeling data mining with granular computing , 2001, 25th Annual International Computer Software and Applications Conference. COMPSAC 2001.

[43]  R. Wille Concept lattices and conceptual knowledge systems , 1992 .

[44]  Y. Yao Mining High Order Decision Rules , 2003 .

[45]  Hisashi Yasunaga,et al.  Information and Knowledge , 2008 .

[46]  Gregory Piatetsky-Shapiro,et al.  Discovery, Analysis, and Presentation of Strong Rules , 1991, Knowledge Discovery in Databases.

[47]  Ronald J. Brachman,et al.  The Process of Knowledge Discovery in Databases , 1996, Advances in Knowledge Discovery and Data Mining.

[48]  Abraham Silberschatz,et al.  What Makes Patterns Interesting in Knowledge Discovery Systems , 1996, IEEE Trans. Knowl. Data Eng..

[49]  Jaideep Srivastava,et al.  Selecting the right interestingness measure for association patterns , 2002, KDD.

[50]  R. M. Adelson,et al.  Utility Theory for Decision Making , 1971 .

[51]  Padhraic Smyth,et al.  An Information Theoretic Approach to Rule Induction from Databases , 1992, IEEE Trans. Knowl. Data Eng..

[52]  Taek-Soo Kim,et al.  A formal model for user preference , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[53]  Zbigniew W. Ras,et al.  Action-Rules: How to Increase Profit of a Company , 2000, PKDD.

[54]  Peter A. Hancock,et al.  The Future of Function Allocation , 1996 .