Dynamic and Renormalization-Group Extensions of the Landau Theory of Critical Phenomena

We place the Landau theory of critical phenomena into the larger context of multiscale thermodynamics. The thermodynamic potentials, with which the Landau theory begins, arise as Lyapunov like functions in the investigation of the relations among different levels of description. By seeing the renormalization-group approach to critical phenomena as inseparability of levels in the critical point, we can adopt the renormalization-group viewpoint into the Landau theory and by doing it bring its predictions closer to results of experimental observations.

[2]  Miroslav Grmela,et al.  Gradient and GENERIC evolution towards reduced dynamics , 2019, 1912.07693.

[3]  Neima Brauner,et al.  Modeling of phase inversion phenomenon in two-phase pipe flows , 2002 .

[4]  David González,et al.  Learning Corrections for Hyperelastic Models From Data , 2019, Front. Mater..

[5]  L. Yeo,et al.  A simple predictive tool for modelling phase inversion in liquid-liquid dispersions , 2002 .

[6]  M. Pavelka,et al.  Non-convex dissipation potentials in multiscale non-equilibrium thermodynamics , 2017, 1701.06094.

[7]  M. S. Green Exact Renormalization in the Statistical Mechanics of Fluids , 1973 .

[8]  L. Yeo,et al.  Simulation studies of phase inversion in agitated vessels using a Monte Carlo technique. , 2002, Journal of colloid and interface science.

[9]  M. Grmela Externally Driven Macroscopic Systems: Dynamics Versus Thermodynamics , 2016, 1601.07151.

[10]  A. Gorban,et al.  Invariant Manifolds for Physical and Chemical Kinetics , 2005 .

[11]  M. Grmela,et al.  Gradient and GENERIC time evolution towards reduced dynamics , 2020, Philosophical Transactions of the Royal Society A.

[12]  Josef Málek,et al.  Thermodynamics and stability of non-equilibrium steady states in open systems -- incompressible heat conducting viscous fluid subject to a temperature gradient , 2019, 1905.09394.

[13]  Miroslav Grmela,et al.  Reductions and extensions in mesoscopic dynamics. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  D. Pine,et al.  Observation of bulk phase separation and coexistence in a sheared micellar solution , 1997 .

[15]  H. Callen,et al.  Thermodynamics : an introduction to the physical theories of equilibrium thermostatics and irreversible thermodynamics. , 1966 .

[16]  J. Málek,et al.  Numerical scheme for simulation of transient flows of non-Newtonian fluids characterised by a non-monotone relation between the symmetric part of the velocity gradient and the Cauchy stress tensor , 2018, Acta Mechanica.

[17]  Sauro Succi INVARIANT MANIFOLDS FOR PHYSICAL AND CHEMICAL KINETICS (Lecture Notes in Physics 660) By A. N. G ORBAN and I. V. K ARLIN : 495 pp., £77, ISBN 3-540-22684-2 (Springer, Heidelberg, 2005) , 2006 .

[18]  M. Grmela,et al.  Ehrenfest regularization of Hamiltonian systems , 2018, Physica D: Nonlinear Phenomena.

[19]  K. Wilson Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture , 1971 .

[20]  N. Kampen,et al.  CONDENSATION OF A CLASSICAL GAS WITH LONG-RANGE ATTRACTION , 1964 .

[21]  L. Landau,et al.  The Theory of Phase Transitions , 1936, Nature.

[22]  K. Rajagopal,et al.  Shear flows of a new class of power-law fluids , 2013 .

[23]  J. Sengers,et al.  Phenomenological description of phase inversion. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  David Jou,et al.  Understanding Non-equilibrium Thermodynamics: Foundations, Applications, Frontiers , 2010 .

[25]  K. Cheng Theory of Superconductivity , 1948, Nature.

[26]  Miroslav Grmela,et al.  Dynamic Maximum Entropy Reduction , 2019, Entropy.

[27]  William Alan Day A Theory of Thermodynamics , 1972 .

[28]  Joseph Boussinesq,et al.  Théorie de l'écoulement tourbillonnant et tumultueux des liquides dans les lits rectilignes a grande section , 2015 .

[29]  M. Grmela Kinetic equation approach to phase transitions , 1971 .