Proposal for (110) InAs/GaSb superlattices for infrared detection

This paper discusses the potential attributes of (110)-grown InAs/GaSb superlattices for infrared detection applications. In comparison to (001)-grown structures, (110) SLs will be thinner, have higher mobilities, diffusion lengths, quantum efficiencies, and gains. Unless growth issues arise, they should also have higher minority carrier lifetimes, higher responsivities, lower noise, and higher detectivities. The first 8x8 envelope-function approximation calculation for a (110)-oriented structure shows the bands to be slightly anisotropic and the oscillator strengths to be polarization dependent. Layer widths for specific absorption thresholds were calculated.

[1]  A. Mascarenhas,et al.  Electronic and optical properties of laterally composition-modulated Al x In 1-x As, Ga x In 1-x P, and Ga x In 1-x As alloys , 1998 .

[2]  J. Wendler,et al.  256×256 focal plane array midwavelength infrared camera based on InAs/GaSb short-period superlattices , 2005 .

[3]  Jason M. Mumolo,et al.  MBE grown type-II MWIR and LWIR superlattice photodiodes , 2007 .

[4]  Darryl L. Smith,et al.  Proposal for strained type II superlattice infrared detectors , 1987 .

[5]  Michael A. Kinch High-operating-temperature (HOT) detector requirements , 2001, SPIE Optics + Photonics.

[6]  Antoni Rogalski,et al.  InAs/GaInSb superlattices as a promising material system for third generation infrared detectors , 2005, Other Conferences.

[7]  Los,et al.  Generalization of the k , 1996, Physical review. B, Condensed matter.

[8]  Manijeh Razeghi,et al.  On the performance and surface passivation of type II InAs∕GaSb superlattice photodiodes for the very-long-wavelength infrared , 2005 .

[9]  T. Nee,et al.  Quantum Spectroscopy of the Low-Field Oscillations in the Surface Impedance , 1968 .

[10]  Martin Walther,et al.  Passivation of InAs∕(GaIn)Sb short-period superlattice photodiodes with 10μm cutoff wavelength by epitaxial overgrowth with AlxGa1−xAsySb1−y , 2005 .

[11]  Frank Fuchs,et al.  Investigation of trap-assisted tunneling current in InAs/(GaIn)Sb superlattice long-wavelength photodiodes , 2002 .

[12]  P. Stavrinou,et al.  General rules for constructing valence band effective mass Hamiltonians with correct operator order for heterostructures with arbitrary orientations , 1998 .

[13]  Bruno Ullrich,et al.  Interfaces as design tools for short-period InAs/GaSb type-II superlattices for mid-infrared detectors , 2005, Optics + Optoelectronics.

[14]  M. S. Singh,et al.  Influence of substrate composition and crystallographic orientation on the band structure of pseudomorphic Si-Ge alloy films. , 1990, Physical review. B, Condensed matter.

[15]  B. Nag Interface roughness scattering limited mobility in AlAs/GaAs, Al0.3Ga0.7As/GaAs and Ga0.5In0.5P/GaAs quantum wells , 2004 .

[16]  M. Yoshita,et al.  Low and anisotropic barrier energy for adatom migration on a GaAs (110) surface studied by first-principles calculations , 2003 .

[17]  Manijeh Razeghi,et al.  High differential resistance type-II InAs∕GaSb superlattice photodiodes for the long-wavelength infrared , 2006 .

[18]  M. Razeghi,et al.  Uncooled operation of type-II InAs∕GaSb superlattice photodiodes in the midwavelength infrared range , 2005 .

[19]  D. Duda,et al.  Spin lifetime of (In,Ga)As/GaAs (110) quantum wells , 2007 .

[20]  R. Hengehold,et al.  Intersubband infrared absorption spectra of Si/Si 1-x Ge x quantum wells grown in the [110] direction , 2002 .

[21]  Krishnamurthy Mahalingam,et al.  Optimization of mid-infrared InAs∕GaSb type-II superlattices , 2004 .

[22]  Krishnamurthy Mahalingam,et al.  Band gap tuning of InAs∕GaSb type-II superlattices for mid-infrared detection , 2004 .

[23]  Gold Electronic transport properties of a two-dimensional electron gas in a silicon quantum-well structure at low temperature. , 1987, Physical review. B, Condensed matter.

[24]  Yajun Wei,et al.  Ammonium sulfide passivation of Type-II InAs/GaSb superlattice photodiodes , 2004 .

[25]  Scheffler,et al.  Calculated atomic structures and electronic properties of GaP, InP, GaAs, and InAs (110) surfaces. , 1991, Physical review. B, Condensed matter.

[26]  Jeffrey H. Warner,et al.  W-structured type-II superlattice long-wave infrared photodiodes with high quantum efficiency , 2006 .

[27]  X. Han,et al.  A model for scattering due to interface roughness in finite quantum wells , 2005 .

[28]  H. Sakaki,et al.  Interface roughness scattering in GaAs/AlAs quantum wells , 1987 .

[29]  R. Henderson,et al.  Strain and crystallographic orientation effects on interband optical matrix elements and band gaps of [11l ]‐oriented III‐V epilayers , 1995 .

[30]  Yajun Wei,et al.  Capacitance-voltage investigation of high-purity InAs∕GaSb superlattice photodiodes , 2006 .

[31]  Martin Walther,et al.  High performance InAs/Ga1-xInxSb superlattice infrared photodiodes , 1997 .

[32]  Gail J. Brown,et al.  Effect of interfaces and the spin-orbit band on the band gaps of InAs/GaSb superlattices beyond the standard envelope-function approximation , 2004 .

[33]  B. Nag,et al.  Interface roughness scattering-limited electron mobility in AlAs/GaAs and Ga0.5In0.5P/GaAs wells , 1999 .

[34]  Frank Fuchs,et al.  Optoelectronic properties of photodiodes for the mid-and far-infrared based on the InAs/GaSb/AlSb materials family , 2001, SPIE OPTO.

[35]  Hole subbands and effective masses in p-doped , 1995, Physical review. B, Condensed matter.

[36]  Y. Takano,et al.  Realization of low facet density and the growth mechanism of GaAs on GaAs(110) by migration‐enhanced epitaxy , 1991 .

[37]  Gail J. Brown,et al.  Demonstration of interface-scattering-limited electron mobilities in InAs∕GaSb superlattices , 2007 .

[38]  L. Peng Strain dependence of hole mass and optical anisotropy in (110) quantum wells , 1997 .

[39]  Jeffrey H. Warner,et al.  Graded band gap for dark-current suppression in long-wave infrared W-structured type-II superlattice photodiodes , 2006 .

[40]  Ma,et al.  Band structure and symmetry analysis of coherently grown Si1-xGex alloys on oriented substrates. , 1993, Physical review. B, Condensed matter.

[41]  Bruno Ullrich,et al.  Short-period InAs∕GaSb type-II superlattices for mid-infrared detectors , 2005 .

[42]  Spin relaxation in [110] and [001] InAs/GaSb superlattices , 2003, Postconference Digest Quantum Electronics and Laser Science, 2003. QELS..

[43]  Frank Fuchs,et al.  Control of the residual doping of InAs/(GaIn)Sb infrared superlattices , 2000 .

[44]  W. Li,et al.  Type-II InAs/GaSb superlattices grown on GaSb (311)B by molecular beam epitaxy for long-wavelength infrared applications , 2006 .