Taming chaos in generalized Liénard systems by the fractional-order feedback based on Melnikov analysis

The dynamical behavior of Liénard systems has always been a hot topic in nonlinear analysis. In the present study, a simple fractional-order feedback controller is put forward to tame chaos for a class of forced generalized Liénard systems. Adopting harmonic balance method, the first-order approximate equivalent integer-order system of the original fractional-order system is deduced. Then the criterion for taming chaos is established by employing the Melnikov approach. Duffing-Rayleigh chaotic oscillator is taken as an example to illustrate the validity of the proposed method. Firstly, the critical feedback intensity and differential order for taming chaos are obtained by the proposed criterion. Then, multiple numerical indicators such as phase portrait, time history plot, Lyapunov exponent and bifurcation diagram are provided to assist in analyzing theoretical results.

[1]  Chuanjiang He,et al.  Fractional-order diffusion coupled with integer-order diffusion for multiplicative noise removal , 2023, Comput. Math. Appl..

[2]  J. Llibre,et al.  Phase portraits of two classes of Liénard equations , 2022, Boletín de la Sociedad Matematica Mexicana.

[3]  J. Ginoux,et al.  Flow curvature manifold and energy of generalized Liénard systems , 2022, Chaos, Solitons & Fractals.

[4]  M. Zerrougui,et al.  Fractional-Order Nonsingular Terminal Sliding Mode Controller for a Quadrotor with disturbances , 2022, Applied Mathematical Modelling.

[5]  L. Tuan,et al.  Neural fractional-order control of telescopic truck cranes , 2022, Applied Mathematical Modelling.

[6]  Liangqiang Zhou,et al.  Chaos of the Rayleigh-Duffing oscillator with a non-smooth periodic perturbation and harmonic excitation , 2022, Math. Comput. Simul..

[7]  Zhengdi Zhang,et al.  Analysis on the motion of nonlinear vibration with fractional order and time variable mass , 2022, Appl. Math. Lett..

[8]  Huihai Wang,et al.  Solutions and memory effect of fractional-order chaotic system: A review (Interdisciplinary Physics) , 2021, Chinese Physics B.

[9]  Yiming Chen,et al.  Fractional modelling and numerical simulations of variable-section viscoelastic arches , 2021, Appl. Math. Comput..

[10]  Enli Chen,et al.  Study on chaos of nonlinear suspension system with fractional-order derivative under random excitation , 2021 .

[11]  S. Labiod,et al.  ℒ1 adaptive controller design for a class of fractional order uncertain systems , 2021, Math. Comput. Simul..

[12]  Chao Han,et al.  A Caputo variable-order fractional damage creep model for sandstone considering effect of relaxation time , 2021, Acta Geotechnica.

[13]  M. R. Homaeinezhad,et al.  Fractional order actuation systems: Theoretical foundation and application in feedback control of mechanical systems , 2020 .

[14]  Qiubao Wang,et al.  The TVICMs method for weak signal detection based on a nonlinear stochastic delay differential system , 2020 .

[15]  Shaopu Yang,et al.  Dynamic analysis and vibration control of nonlinear boring bar with fractional-order model of magnetorheological fluid , 2020, International Journal of Non-Linear Mechanics.

[16]  Y. Zhang,et al.  Coexistence of bistable multi-pulse chaotic motions with large amplitude vibrations in buckled sandwich plate under transverse and in-plane excitations. , 2020, Chaos.

[17]  K. Suresh,et al.  Extreme and critical transition events in the memristor based Liénard system , 2020, The European Physical Journal Special Topics.

[18]  Shaopu Yang,et al.  Chaos detection of Duffing system with fractional-order derivative by Melnikov method. , 2019, Chaos.

[19]  K. Thamilmaran,et al.  Different transitions of bursting and mixed-mode oscillations in Liénard system , 2019, AEU - International Journal of Electronics and Communications.

[20]  C. H. Miwadinou,et al.  Stability and chaotic dynamics of forced $$\phi ^8$$ generalised Liénard systems , 2019, Pramana.

[21]  D. Sierra-Porta Analytic Approximations to Liénard Nonlinear Oscillators with Modified Energy Balance Method , 2019, Journal of Vibration Engineering & Technologies.

[22]  Abhilash Somayajula,et al.  Parametric roll vulnerability of ships using Markov and Melnikov approaches , 2019, Nonlinear Dynamics.

[23]  Maoan Han,et al.  Bifurcations of small limit cycles in Liénard systems with cubic restoring terms , 2019, Journal of Differential Equations.

[24]  A. Muñoz‐Vázquez,et al.  A novel PID control with fractional nonlinear integral , 2018, Nonlinear Dynamics.

[25]  V. Parra‐Vega,et al.  A novel PID control with fractional nonlinear integral , 2018, Nonlinear Dynamics.

[26]  C. H. Miwadinou,et al.  Effect of amplitude modulated signal on chaotic motions in a mixed Rayleigh–Liénard oscillator , 2018, Chaos, Solitons & Fractals.

[27]  Bohdan I. Lev,et al.  On certain properties of nonlinear oscillator with coordinate-dependent mass , 2017 .

[28]  T. Harko,et al.  Exact solutions of the Liénard- and generalized Liénard-type ordinary nonlinear differential equations obtained by deforming the phase space coordinates of the linear harmonic oscillator , 2015, 1505.02364.

[29]  Sachin Bhalekar,et al.  A new predictor-corrector method for fractional differential equations , 2014, Appl. Math. Comput..

[30]  M. P. Aghababa Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller , 2012 .

[31]  B. Toni Almost and pseudo-almost limit cycles for some forced Liénard systems , 2009 .

[32]  Yangquan Chen,et al.  Fractional order [proportional derivative] controller for a class of fractional order systems , 2009, Autom..

[33]  Jianying Shao,et al.  Existence and uniqueness of periodic solutions for a class of generalized Liénard systems with forcing term , 2009 .

[34]  Mohammad Saleh Tavazoei,et al.  Chaos control via a simple fractional-order controller , 2008 .

[35]  Weihua Deng,et al.  Remarks on fractional derivatives , 2007, Appl. Math. Comput..

[36]  S. He 贺,et al.  Solutions and memory effect of fractional-order chaotic system: A review , 2022 .

[37]  S. Hassan HosseinNia,et al.  Linear fractional order controllers; A survey in the frequency domain , 2019, Annu. Rev. Control..