Contracting preference relations for database applications

The binary relation framework has been shown to be applicable to many real-life preference handling scenarios. Here we study preference contraction: the problem of discarding selected preferences. We argue that the property of minimality and the preservation of strict partial orders are crucial for contractions. Contractions can be further constrained by specifying which preferences should be protected. We consider preference relations that are finite or finitely representable using preference formulas. We present algorithms for computing minimal and preference-protecting minimal contractions for finite as well as finitely representable preference relations. We study relationships between preference change in the binary relation framework and belief change in the belief revision theory. We evaluate the proposed algorithms experimentally and present the results.

[1]  Werner Kießling,et al.  Foundations of Preferences in Database Systems , 2002, VLDB.

[2]  Floris Geerts,et al.  Constraint Query Languages , 2008, Encyclopedia of GIS.

[3]  Dov M. Gabbay,et al.  Handbook of defeasible reasoning and uncertainty management systems: volume 2: reasoning with actual and potential contradictions , 1998 .

[4]  Donald Kossmann,et al.  The Skyline operator , 2001, Proceedings 17th International Conference on Data Engineering.

[5]  Jan Chomicki,et al.  Minimal Contraction of Preference Relations , 2008, AAAI.

[6]  Peter C. Fishburn,et al.  Utility theory for decision making , 1970 .

[7]  Ronen I. Brafman,et al.  CP-nets: A Tool for Representing and Reasoning withConditional Ceteris Paribus Preference Statements , 2011, J. Artif. Intell. Res..

[8]  R. M. Adelson,et al.  Utility Theory for Decision Making , 1971 .

[9]  Wolf-Tilo Balke,et al.  Exploiting Indifference for Customization of Partial Order Skylines , 2006, 2006 10th International Database Engineering and Applications Symposium (IDEAS'06).

[10]  Jan Chomicki,et al.  Preference formulas in relational queries , 2003, TODS.

[11]  Jan Chomicki Database querying under changing preferences , 2007, Annals of Mathematics and Artificial Intelligence.

[12]  Bernhard Seeger,et al.  Progressive skyline computation in database systems , 2005, TODS.

[13]  Jürg Kohlas,et al.  Handbook of Defeasible Reasoning and Uncertainty Management Systems , 2000 .

[14]  Peter Gärdenfors,et al.  On the logic of theory change: Partial meet contraction and revision functions , 1985, Journal of Symbolic Logic.

[15]  Jan Chomicki,et al.  Skyline with presorting , 2003, Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405).

[16]  Wolf-Tilo Balke,et al.  Eliciting Matters - Controlling Skyline Sizes by Incremental Integration of User Preferences , 2007, DASFAA.

[17]  Sven Ove Hansson,et al.  Revision of Belief Sets and Belief Bases , 1998 .

[18]  Li Chen,et al.  Evaluating Critiquing-based Recommender Agents , 2006, AAAI.

[19]  S. Hansson Changes in preference , 1995 .

[20]  Jarek Gryz,et al.  Algorithms and analyses for maximal vector computation , 2007, The VLDB Journal.

[21]  Raghu Ramakrishnan,et al.  Database Management Systems , 1976 .

[22]  Ronald L. Rivest,et al.  Introduction to Algorithms, Second Edition , 2001 .

[23]  Jianwen Su,et al.  Maintaining Transitive Closure of Graphs in SQL , 1999 .

[24]  Jon Doyle,et al.  Prospects for Preferences , 2004, Comput. Intell..

[25]  Michael Freund,et al.  On the revision of preferences and rational inference processes , 2004, Artif. Intell..

[26]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[27]  Anthony K. H. Tung,et al.  Finding k-dominant skylines in high dimensional space , 2006, SIGMOD Conference.

[28]  C. Allen,et al.  Stanford Encyclopedia of Philosophy , 2011 .

[29]  Werner Kießling,et al.  Optimization of Relational Preference Queries , 2005, ADC.

[30]  Jan Chomicki,et al.  Semantic optimization techniques for preference queries , 2005, Inf. Syst..