Rates of convergence for partitioning and nearest neighbor regression estimates with unbounded data

Estimation of regression functions from independent and identically distributed data is considered. The L"2 error with integration with respect to the design measure is used as an error criterion. Usually in the analysis of the rate of convergence of estimates besides smoothness assumptions on the regression function and moment conditions on Y also boundedness assumptions on X are made. In this article we consider partitioning and nearest neighbor estimates and show that by replacing the boundedness assumption on X by a proper moment condition the same rate of convergence can be shown as for bounded data.

[1]  A. Nobel Histogram regression estimation using data-dependent partitions , 1996 .

[2]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[3]  M. Kohler Universally Consistent Regression Function Estimation Using Hierarchial B-Splines , 1999 .

[4]  A. Krzyżak,et al.  Distribution-Free Pointwise Consistency of Kernel Regression Estimate , 1984 .

[5]  Adam Krzyzak,et al.  Nonparametric regression estimation using penalized least squares , 2001, IEEE Trans. Inf. Theory.

[6]  Luc Devroye,et al.  Any Discrimination Rule Can Have an Arbitrarily Bad Probability of Error for Finite Sample Size , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Gábor Lugosi,et al.  Nonparametric estimation via empirical risk minimization , 1995, IEEE Trans. Inf. Theory.

[8]  C. J. Stone,et al.  Consistent Nonparametric Regression , 1977 .

[9]  Sanjeev R. Kulkarni,et al.  Rates of convergence of nearest neighbor estimation under arbitrary sampling , 1995, IEEE Trans. Inf. Theory.

[10]  G. Lugosi,et al.  On the Strong Universal Consistency of Nearest Neighbor Regression Function Estimates , 1994 .

[11]  L. Györfi,et al.  WEAK AND STRONG UNIVERSAL CONSISTENCY OF SEMI-RECURSIVE KERNEL AND PARTITIONING REGRESSION ESTIMATES , 1998 .

[12]  Adam Krzyzak,et al.  A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.

[13]  C. Spiegelman,et al.  Consistent Window Estimation in Nonparametric Regression , 1980 .

[14]  L. Györfi,et al.  A Distribution-Free Theory of Nonparametric Regression (Springer Series in Statistics) , 2002 .

[15]  L. Györfi,et al.  On the strong universal consistency of a recursive regression estimate by Pál Révész , 1997 .

[16]  László Györfi,et al.  The Rate of Convergence of k ,-NN Regression Estimates and Classification Rules , 1978 .

[17]  L. Gyorfi The rate of convergence of k_n -NN regression estimates and classification rules (Corresp.) , 1981 .

[18]  John B. Anderson Simulated error performance of multi-h phase codes , 1981, IEEE Trans. Inf. Theory.

[19]  M. Kohler Universal Consistency of Local Polynomial Kernel Regression Estimates , 2002 .