A nonlinear recursive instrumental variables identification method of Hammerstein ARMAX system

Identification of nonlinear Hammerstein models has received much attention due to its ability to describe a wide variety of nonlinear systems. This paper considers the problem of the parameter estimation of the ARMAX models for the Hammerstein systems. A novel nonlinear recursive instrumental variables method, which is simple and easy for practical applications, is proposed to deal with the problem. In order to make the instrumental variables uncorrelated with the colored noise and to obtain better identification effect, three approaches for choosing the instrumental variables usually used in the linear RIV method are introduced. Furthermore, the procedure of the nonlinear RIV method and its property of the mean square convergence of the nonlinear RIV method are rigorously derived. Finally, an example is carried out as illustration, where the ARMAX-RLS method is compared as the basis, and the results show that the nonlinear RIV method is superior to ARMAX-RLS method in terms of identification accuracy and convergence speed under colored noise, which reveals the effectiveness of the proposed method.

[1]  F. Ding,et al.  Maximum likelihood Newton recursive and the Newton iterative estimation algorithms for Hammerstein CARAR systems , 2014 .

[2]  Xinggao Liu,et al.  Solution of Chemical Dynamic Optimization Using the Simultaneous Strategies , 2013 .

[3]  Er-Wei Bai,et al.  Iterative identification of Hammerstein systems , 2007, Autom..

[4]  Jixin Qian,et al.  Modeling, Control, and Optimization of Ideal Internal Thermally Coupled Distillation Columns , 2000 .

[5]  Junhong Li,et al.  Parameter estimation for Hammerstein CARARMA systems based on the Newton iteration , 2013, Appl. Math. Lett..

[6]  R. Luus,et al.  A noniterative method for identification using Hammerstein model , 1971 .

[7]  Jing Hu,et al.  Culturomics meets random fractal theory: insights into long-range correlations of social and natural phenomena over the past two centuries , 2012, Journal of The Royal Society Interface.

[8]  Yves Rolain,et al.  Parametric Identification of Parallel Hammerstein Systems , 2011, IEEE Transactions on Instrumentation and Measurement.

[9]  Feng Ding,et al.  Gradient-Based Identification Methods for Hammerstein Nonlinear ARMAX Models , 2006 .

[10]  Johan Schoukens,et al.  Initial estimates of Wiener and Hammerstein systems using multisine excitation , 2001, IEEE Trans. Instrum. Meas..

[11]  Feng Ding,et al.  Identification methods for Hammerstein nonlinear systems , 2011, Digit. Signal Process..

[12]  Biao Huang,et al.  Identification of Hammerstein systems without explicit parameterisation of non-linearity , 2009, Int. J. Control.

[13]  V. Cerone,et al.  Bounded error identification of Hammerstein systems through sparse polynomial optimization , 2012, Autom..

[14]  Jozef Vörös,et al.  Iterative algorithm for parameter identification of Hammerstein systems with two-segment nonlinearities , 1999, IEEE Trans. Autom. Control..

[15]  Feng Ding,et al.  Extended stochastic gradient identification algorithms for Hammerstein-Wiener ARMAX systems , 2008, Comput. Math. Appl..

[16]  Feng Ding,et al.  Identification of Hammerstein nonlinear ARMAX systems , 2005, Autom..

[17]  Wlodzimierz Greblicki,et al.  Recursive identification of continuous-time Hammerstein systems , 2002, Int. J. Syst. Sci..

[18]  Jozef Vörös,et al.  Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones , 2003, IEEE Trans. Autom. Control..

[19]  Wei Xing Zheng,et al.  Identification of a Class of Nonlinear Autoregressive Models With Exogenous Inputs Based on Kernel Machines , 2011, IEEE Transactions on Signal Processing.

[20]  Xia Hong,et al.  Hammerstein model identification algorithm using Bezier-Bernstein approximation , 2007 .

[21]  M. Nazmul Karim,et al.  A New Method for the Identification of Hammerstein Model , 1997, Autom..

[22]  W. Greblicki,et al.  Nonparametric system identification , 2008 .

[23]  Zygmunt Hasiewicz,et al.  Hammerstein system identification by non-parametric instrumental variables , 2009, Int. J. Control.

[24]  Jie Sheng,et al.  Convergence of stochastic gradient estimation algorithm for multivariable ARX-like systems , 2010, Comput. Math. Appl..

[25]  Feng Ding,et al.  Auxiliary model-based least-squares identification methods for Hammerstein output-error systems , 2007, Syst. Control. Lett..

[26]  Feng Ding,et al.  A modified stochastic gradient based parameter estimation algorithm for dual-rate sampled-data systems , 2010, Digit. Signal Process..

[27]  P. Gallman A comparison of two Hammerstein model identification algorithms , 1976 .

[28]  K. Narendra,et al.  An iterative method for the identification of nonlinear systems using a Hammerstein model , 1966 .

[29]  Wlodzimierz Greblicki,et al.  Stochastic approximation in nonparametric identification of Hammerstein systems , 2002, IEEE Trans. Autom. Control..

[30]  Rik Pintelon,et al.  Blind maximum likelihood identification of Hammerstein systems , 2008, Autom..

[31]  Wen-Xiao Zhao,et al.  Adaptive tracking and recursive identification for Hammerstein systems , 2009, Autom..

[32]  Er-Wei Bai,et al.  Iterative identification of Hammerstein systems , 2007, Autom..

[33]  R. Stanway,et al.  System identification using associated linear equations , 2004 .

[34]  Matjaz Perc,et al.  Self-organization of progress across the century of physics , 2013, Scientific Reports.

[35]  Edriss S. Titi,et al.  Remarks on a Smoluchowski equation , 2004 .

[36]  M. Perc Nonlinear time series analysis of the human electrocardiogram , 2005 .

[37]  Feng Ding,et al.  Performance bounds of forgetting factor least-squares algorithms for time-varying systems with finite measurement data , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[38]  Raymond A. de Callafon,et al.  Hammerstein system identification using nuclear norm minimization , 2012, Autom..

[39]  M. Perc The dynamics of human gait , 2005 .

[40]  Z. Lang A nonparametric polynomial identification algorithm for the Hammerstein system , 1997, IEEE Trans. Autom. Control..

[41]  M. Perc,et al.  Detecting chaos from a time series , 2005 .

[42]  Han-Fu Chen,et al.  Recursive identification for MIMO Hammerstein systems , 2010, Proceedings of the 29th Chinese Control Conference.

[43]  W. Greblicki,et al.  Identification of discrete Hammerstein systems using kernel regression estimates , 1986 .

[44]  Jaroslaw Michalkiewicz Modified Kolmogorov's Neural Network in the Identification of Hammerstein and Wiener Systems , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[45]  Xinggao Liu,et al.  A novel APSO-aided maximum likelihood identification method for Hammerstein systems , 2013 .

[46]  Er-Wei Bai A blind approach to the Hammerstein-Wiener model identification , 2002, Autom..

[47]  Guoqi Li,et al.  Convergence of normalized iterative identification of Hammerstein systems , 2011, Syst. Control. Lett..

[48]  Feng Ding,et al.  Data filtering based recursive least squares algorithm for Hammerstein systems using the key-term separation principle , 2013, Inf. Sci..

[49]  Feng Ding,et al.  Hierarchical gradient based iterative parameter estimation algorithm for multivariable output error moving average systems , 2011, Comput. Math. Appl..

[50]  Lennart Ljung,et al.  A theoretical analysis of recursive identification methods , 1978, Autom..

[51]  Feng Ding,et al.  Decomposition Based Newton Iterative Identification Method for a Hammerstein Nonlinear FIR System with ARMA Noise , 2014, Circuits Syst. Signal Process..

[52]  Michel Verhaegen,et al.  Identifying MIMO Wiener systems using subspace model identification methods , 1996, Signal Process..

[53]  J. MacArthur,et al.  A new approach for nonlinear process identification using orthonormal bases and ordinal splines , 2012 .

[54]  S. Ding,et al.  Closed-loop subspace identification: an orthogonal projection approach , 2004 .

[55]  Huazhen Fang,et al.  Kalman filter-based identification for systems with randomly missing measurements in a network environment , 2010, Int. J. Control.

[56]  Jing Lu,et al.  Least squares based iterative identification for a class of multirate systems , 2010, Autom..