A new multivariate spline based on mixed partial derivatives and its finite element approximation

Abstract We present a new multivariate spline using mixed partial derivatives. We show the existence and uniqueness of the proposed multivariate spline problem, and propose a simple finite element approximation.

[1]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[2]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[3]  L. Stals,et al.  A mixed finite element discretisation of thin-plate splines , 2011 .

[4]  Stephen Roberts,et al.  Finite element thin plate splines for surface fitting , 1997 .

[5]  H. Triebel,et al.  Topics in Fourier Analysis and Function Spaces , 1987 .

[6]  L. Stals,et al.  Smoothing large data sets using discrete thin plate splines , 2006 .

[7]  Bishnu P. Lamichhane,et al.  A stabilised mixed finite element method for thin plate splines based on biorthogonal systems | NOVA. The University of Newcastle's Digital Repository , 2013 .

[8]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[9]  Tim Ramsay,et al.  Spline smoothing over difficult regions , 2002 .

[10]  Irfan Altas,et al.  Approximation of a Thin Plate Spline Smoother Using Continuous Piecewise Polynomial Functions , 2003, SIAM J. Numer. Anal..

[11]  G. Burton Sobolev Spaces , 2013 .

[12]  Markus Hegland,et al.  Fitting multidimensional data using gradient penalties and the sparse grid combination technique , 2009, Computing.

[13]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[14]  Susanne C. Brenner,et al.  Poincaré-Friedrichs Inequalities for Piecewise H1 Functions , 2003, SIAM J. Numer. Anal..

[15]  Dennis D Cox,et al.  Convergence Rates for Multivariate Smoothing Spline Functions. , 1982 .